| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrnloopv.e |  |-  E = ( iEdg ` G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 1 2 | umgredgprv |  |-  ( ( G e. UMGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) | 
						
							| 5 | 1 | umgrnloopv |  |-  ( ( G e. UMGraph /\ M e. ( Vtx ` G ) ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) | 
						
							| 6 | 5 | ex |  |-  ( G e. UMGraph -> ( M e. ( Vtx ` G ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) ) | 
						
							| 7 | 6 | com23 |  |-  ( G e. UMGraph -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( G e. UMGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) -> M =/= N ) ) | 
						
							| 10 | 9 | com12 |  |-  ( M e. ( Vtx ` G ) -> ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) -> ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) ) | 
						
							| 12 | 4 11 | mpcom |  |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) | 
						
							| 13 | 12 | rexlimdva2 |  |-  ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) ) |