Metamath Proof Explorer


Theorem umgrnloop

Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e
|- E = ( iEdg ` G )
Assertion umgrnloop
|- ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) )

Proof

Step Hyp Ref Expression
1 umgrnloopv.e
 |-  E = ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 1 2 umgredgprv
 |-  ( ( G e. UMGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) )
4 3 imp
 |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) )
5 1 umgrnloopv
 |-  ( ( G e. UMGraph /\ M e. ( Vtx ` G ) ) -> ( ( E ` x ) = { M , N } -> M =/= N ) )
6 5 ex
 |-  ( G e. UMGraph -> ( M e. ( Vtx ` G ) -> ( ( E ` x ) = { M , N } -> M =/= N ) ) )
7 6 com23
 |-  ( G e. UMGraph -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) )
8 7 adantr
 |-  ( ( G e. UMGraph /\ x e. dom E ) -> ( ( E ` x ) = { M , N } -> ( M e. ( Vtx ` G ) -> M =/= N ) ) )
9 8 imp
 |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> ( M e. ( Vtx ` G ) -> M =/= N ) )
10 9 com12
 |-  ( M e. ( Vtx ` G ) -> ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) )
11 10 adantr
 |-  ( ( M e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) -> ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N ) )
12 4 11 mpcom
 |-  ( ( ( G e. UMGraph /\ x e. dom E ) /\ ( E ` x ) = { M , N } ) -> M =/= N )
13 12 rexlimdva2
 |-  ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) )