Metamath Proof Explorer


Theorem umgrnloop0

Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e
|- E = ( iEdg ` G )
Assertion umgrnloop0
|- ( G e. UMGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) )

Proof

Step Hyp Ref Expression
1 umgrnloopv.e
 |-  E = ( iEdg ` G )
2 neirr
 |-  -. U =/= U
3 1 umgrnloop
 |-  ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { U , U } -> U =/= U ) )
4 2 3 mtoi
 |-  ( G e. UMGraph -> -. E. x e. dom E ( E ` x ) = { U , U } )
5 simpr
 |-  ( ( G e. UMGraph /\ ( E ` x ) = { U } ) -> ( E ` x ) = { U } )
6 dfsn2
 |-  { U } = { U , U }
7 5 6 eqtrdi
 |-  ( ( G e. UMGraph /\ ( E ` x ) = { U } ) -> ( E ` x ) = { U , U } )
8 7 ex
 |-  ( G e. UMGraph -> ( ( E ` x ) = { U } -> ( E ` x ) = { U , U } ) )
9 8 reximdv
 |-  ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { U } -> E. x e. dom E ( E ` x ) = { U , U } ) )
10 4 9 mtod
 |-  ( G e. UMGraph -> -. E. x e. dom E ( E ` x ) = { U } )
11 ralnex
 |-  ( A. x e. dom E -. ( E ` x ) = { U } <-> -. E. x e. dom E ( E ` x ) = { U } )
12 10 11 sylibr
 |-  ( G e. UMGraph -> A. x e. dom E -. ( E ` x ) = { U } )
13 rabeq0
 |-  ( { x e. dom E | ( E ` x ) = { U } } = (/) <-> A. x e. dom E -. ( E ` x ) = { U } )
14 12 13 sylibr
 |-  ( G e. UMGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) )