Metamath Proof Explorer


Theorem umgrpredgv

Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv . This theorem does not hold for arbitrary pseudographs: if either M or N is a proper class, then { M , N } e. E could still hold ( { M , N } would be either { M } or { N } , see prprc1 or prprc2 , i.e. a loop), but M e. V or N e. V would not be true. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgredg.v
|- V = ( Vtx ` G )
upgredg.e
|- E = ( Edg ` G )
Assertion umgrpredgv
|- ( ( G e. UMGraph /\ { M , N } e. E ) -> ( M e. V /\ N e. V ) )

Proof

Step Hyp Ref Expression
1 upgredg.v
 |-  V = ( Vtx ` G )
2 upgredg.e
 |-  E = ( Edg ` G )
3 2 eleq2i
 |-  ( { M , N } e. E <-> { M , N } e. ( Edg ` G ) )
4 edgumgr
 |-  ( ( G e. UMGraph /\ { M , N } e. ( Edg ` G ) ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) )
5 3 4 sylan2b
 |-  ( ( G e. UMGraph /\ { M , N } e. E ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) )
6 eqid
 |-  { M , N } = { M , N }
7 6 hashprdifel
 |-  ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) )
8 1 eqcomi
 |-  ( Vtx ` G ) = V
9 8 pweqi
 |-  ~P ( Vtx ` G ) = ~P V
10 9 eleq2i
 |-  ( { M , N } e. ~P ( Vtx ` G ) <-> { M , N } e. ~P V )
11 prelpw
 |-  ( ( M e. { M , N } /\ N e. { M , N } ) -> ( ( M e. V /\ N e. V ) <-> { M , N } e. ~P V ) )
12 11 biimprd
 |-  ( ( M e. { M , N } /\ N e. { M , N } ) -> ( { M , N } e. ~P V -> ( M e. V /\ N e. V ) ) )
13 10 12 syl5bi
 |-  ( ( M e. { M , N } /\ N e. { M , N } ) -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) )
14 13 3adant3
 |-  ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) )
15 7 14 syl
 |-  ( ( # ` { M , N } ) = 2 -> ( { M , N } e. ~P ( Vtx ` G ) -> ( M e. V /\ N e. V ) ) )
16 15 impcom
 |-  ( ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) -> ( M e. V /\ N e. V ) )
17 5 16 syl
 |-  ( ( G e. UMGraph /\ { M , N } e. E ) -> ( M e. V /\ N e. V ) )