Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrres1.e |
|- E = ( Edg ` G ) |
3 |
|
upgrres1.f |
|- F = { e e. E | N e/ e } |
4 |
|
upgrres1.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
5 |
|
f1oi |
|- ( _I |` F ) : F -1-1-onto-> F |
6 |
|
f1of |
|- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F ) |
7 |
5 6
|
mp1i |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : F --> F ) |
8 |
7
|
ffdmd |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F ) |
9 |
|
rnresi |
|- ran ( _I |` F ) = F |
10 |
1 2 3
|
umgrres1lem |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
11 |
9 10
|
eqsstrrid |
|- ( ( G e. UMGraph /\ N e. V ) -> F C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
12 |
8 11
|
fssd |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
13 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
14 |
4 13
|
eqeltri |
|- S e. _V |
15 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
16 |
15
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
17 |
1 2 3 4
|
upgrres1lem3 |
|- ( iEdg ` S ) = ( _I |` F ) |
18 |
17
|
eqcomi |
|- ( _I |` F ) = ( iEdg ` S ) |
19 |
16 18
|
isumgrs |
|- ( S e. _V -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
20 |
14 19
|
mp1i |
|- ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
21 |
12 20
|
mpbird |
|- ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |