| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgrres1.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | upgrres1.f |  |-  F = { e e. E | N e/ e } | 
						
							| 4 |  | upgrres1.s |  |-  S = <. ( V \ { N } ) , ( _I |` F ) >. | 
						
							| 5 |  | f1oi |  |-  ( _I |` F ) : F -1-1-onto-> F | 
						
							| 6 |  | f1of |  |-  ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F ) | 
						
							| 7 | 5 6 | mp1i |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : F --> F ) | 
						
							| 8 | 7 | ffdmd |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F ) | 
						
							| 9 |  | rnresi |  |-  ran ( _I |` F ) = F | 
						
							| 10 | 1 2 3 | umgrres1lem |  |-  ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 11 | 9 10 | eqsstrrid |  |-  ( ( G e. UMGraph /\ N e. V ) -> F C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 12 | 8 11 | fssd |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) | 
						
							| 13 |  | opex |  |-  <. ( V \ { N } ) , ( _I |` F ) >. e. _V | 
						
							| 14 | 4 13 | eqeltri |  |-  S e. _V | 
						
							| 15 | 1 2 3 4 | upgrres1lem2 |  |-  ( Vtx ` S ) = ( V \ { N } ) | 
						
							| 16 | 15 | eqcomi |  |-  ( V \ { N } ) = ( Vtx ` S ) | 
						
							| 17 | 1 2 3 4 | upgrres1lem3 |  |-  ( iEdg ` S ) = ( _I |` F ) | 
						
							| 18 | 17 | eqcomi |  |-  ( _I |` F ) = ( iEdg ` S ) | 
						
							| 19 | 16 18 | isumgrs |  |-  ( S e. _V -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 20 | 14 19 | mp1i |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) | 
						
							| 21 | 12 20 | mpbird |  |-  ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |