Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrres.e |
|- E = ( iEdg ` G ) |
3 |
|
upgrres.f |
|- F = { i e. dom E | N e/ ( E ` i ) } |
4 |
|
df-ima |
|- ( E " F ) = ran ( E |` F ) |
5 |
|
fveq2 |
|- ( i = j -> ( E ` i ) = ( E ` j ) ) |
6 |
|
neleq2 |
|- ( ( E ` i ) = ( E ` j ) -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) |
7 |
5 6
|
syl |
|- ( i = j -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) |
8 |
7 3
|
elrab2 |
|- ( j e. F <-> ( j e. dom E /\ N e/ ( E ` j ) ) ) |
9 |
1 2
|
umgrf |
|- ( G e. UMGraph -> E : dom E --> { p e. ~P V | ( # ` p ) = 2 } ) |
10 |
|
ffvelrn |
|- ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } ) |
11 |
|
fveqeq2 |
|- ( p = ( E ` j ) -> ( ( # ` p ) = 2 <-> ( # ` ( E ` j ) ) = 2 ) ) |
12 |
11
|
elrab |
|- ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } <-> ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) ) |
13 |
|
simpll |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P V ) |
14 |
|
elpwi |
|- ( ( E ` j ) e. ~P V -> ( E ` j ) C_ V ) |
15 |
14
|
adantr |
|- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( E ` j ) C_ V ) |
16 |
15
|
adantr |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) C_ V ) |
17 |
|
simpr |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> N e/ ( E ` j ) ) |
18 |
|
elpwdifsn |
|- ( ( ( E ` j ) e. ~P V /\ ( E ` j ) C_ V /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) |
19 |
13 16 17 18
|
syl3anc |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) |
20 |
|
simpr |
|- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( # ` ( E ` j ) ) = 2 ) |
21 |
20
|
adantr |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( # ` ( E ` j ) ) = 2 ) |
22 |
11 19 21
|
elrabd |
|- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
23 |
22
|
ex |
|- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
24 |
23
|
a1d |
|- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
25 |
12 24
|
sylbi |
|- ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
26 |
10 25
|
syl |
|- ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
27 |
26
|
ex |
|- ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( j e. dom E -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
28 |
27
|
com23 |
|- ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
29 |
9 28
|
syl |
|- ( G e. UMGraph -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
30 |
29
|
imp4b |
|- ( ( G e. UMGraph /\ N e. V ) -> ( ( j e. dom E /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
31 |
8 30
|
syl5bi |
|- ( ( G e. UMGraph /\ N e. V ) -> ( j e. F -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
32 |
31
|
ralrimiv |
|- ( ( G e. UMGraph /\ N e. V ) -> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
33 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
34 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun E ) |
35 |
33 34
|
syl |
|- ( G e. UMGraph -> Fun E ) |
36 |
35
|
adantr |
|- ( ( G e. UMGraph /\ N e. V ) -> Fun E ) |
37 |
3
|
ssrab3 |
|- F C_ dom E |
38 |
|
funimass4 |
|- ( ( Fun E /\ F C_ dom E ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
39 |
36 37 38
|
sylancl |
|- ( ( G e. UMGraph /\ N e. V ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
40 |
32 39
|
mpbird |
|- ( ( G e. UMGraph /\ N e. V ) -> ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
41 |
4 40
|
eqsstrrid |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |