Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
isumgr |
|- ( G e. UMGraph -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
4 |
|
id |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
5 |
|
2re |
|- 2 e. RR |
6 |
5
|
leidi |
|- 2 <_ 2 |
7 |
6
|
a1i |
|- ( ( # ` x ) = 2 -> 2 <_ 2 ) |
8 |
|
breq1 |
|- ( ( # ` x ) = 2 -> ( ( # ` x ) <_ 2 <-> 2 <_ 2 ) ) |
9 |
7 8
|
mpbird |
|- ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) |
10 |
9
|
a1i |
|- ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) ) |
11 |
10
|
ss2rabi |
|- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } |
12 |
11
|
a1i |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
13 |
4 12
|
fssd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
14 |
3 13
|
syl6bi |
|- ( G e. UMGraph -> ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
15 |
14
|
pm2.43i |
|- ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
16 |
1 2
|
isupgr |
|- ( G e. UMGraph -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
17 |
15 16
|
mpbird |
|- ( G e. UMGraph -> G e. UPGraph ) |