Step |
Hyp |
Ref |
Expression |
1 |
|
umgrupgr |
|- ( G e. UMGraph -> G e. UPGraph ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
2
|
upgrwlkvtxedg |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
4 |
1 3
|
sylan |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) |
5 |
2
|
umgredgne |
|- ( ( G e. UMGraph /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
6 |
5
|
ex |
|- ( G e. UMGraph -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
7 |
6
|
adantr |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
8 |
7
|
ralimdv |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. ( Edg ` G ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
9 |
4 8
|
mpd |
|- ( ( G e. UMGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |