Step |
Hyp |
Ref |
Expression |
1 |
|
s3wwlks2on.v |
|- V = ( Vtx ` G ) |
2 |
|
usgrwwlks2on.e |
|- E = ( Edg ` G ) |
3 |
|
umgrupgr |
|- ( G e. UMGraph -> G e. UPGraph ) |
4 |
3
|
adantr |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> G e. UPGraph ) |
5 |
|
simp1 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> A e. V ) |
6 |
5
|
adantl |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
7 |
|
simpr3 |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
8 |
1
|
s3wwlks2on |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
9 |
4 6 7 8
|
syl3anc |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
10 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
11 |
1 10
|
upgr2wlk |
|- ( G e. UPGraph -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) |
12 |
3 11
|
syl |
|- ( G e. UMGraph -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) |
13 |
12
|
adantr |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) |
14 |
|
s3fv0 |
|- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
15 |
14
|
3ad2ant1 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 0 ) = A ) |
16 |
|
s3fv1 |
|- ( B e. V -> ( <" A B C "> ` 1 ) = B ) |
17 |
16
|
3ad2ant2 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 1 ) = B ) |
18 |
15 17
|
preq12d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } = { A , B } ) |
19 |
18
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } <-> ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } ) ) |
20 |
|
s3fv2 |
|- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
21 |
20
|
3ad2ant3 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 2 ) = C ) |
22 |
17 21
|
preq12d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } = { B , C } ) |
23 |
22
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } <-> ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) |
24 |
19 23
|
anbi12d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) |
25 |
24
|
adantl |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) |
26 |
25
|
3anbi3d |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) ) |
27 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
28 |
10
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
29 |
|
fdmrn |
|- ( Fun ( iEdg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) |
30 |
|
simpr |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) |
31 |
|
id |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) ) |
32 |
|
c0ex |
|- 0 e. _V |
33 |
32
|
prid1 |
|- 0 e. { 0 , 1 } |
34 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
35 |
33 34
|
eleqtrri |
|- 0 e. ( 0 ..^ 2 ) |
36 |
35
|
a1i |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> 0 e. ( 0 ..^ 2 ) ) |
37 |
31 36
|
ffvelrnd |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( f ` 0 ) e. dom ( iEdg ` G ) ) |
38 |
37
|
adantr |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( f ` 0 ) e. dom ( iEdg ` G ) ) |
39 |
30 38
|
ffvelrnd |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) ) |
40 |
|
1ex |
|- 1 e. _V |
41 |
40
|
prid2 |
|- 1 e. { 0 , 1 } |
42 |
41 34
|
eleqtrri |
|- 1 e. ( 0 ..^ 2 ) |
43 |
42
|
a1i |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> 1 e. ( 0 ..^ 2 ) ) |
44 |
31 43
|
ffvelrnd |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( f ` 1 ) e. dom ( iEdg ` G ) ) |
45 |
44
|
adantr |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( f ` 1 ) e. dom ( iEdg ` G ) ) |
46 |
30 45
|
ffvelrnd |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) |
47 |
39 46
|
jca |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) |
48 |
47
|
ex |
|- ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
50 |
49
|
com12 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
51 |
29 50
|
sylbi |
|- ( Fun ( iEdg ` G ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
52 |
27 28 51
|
3syl |
|- ( G e. UMGraph -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
53 |
52
|
imp |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) |
54 |
|
eqcom |
|- ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } <-> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) |
55 |
54
|
biimpi |
|- ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) |
57 |
56
|
3ad2ant3 |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) |
58 |
57
|
adantl |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) |
59 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
60 |
2 59
|
eqtri |
|- E = ran ( iEdg ` G ) |
61 |
60
|
a1i |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> E = ran ( iEdg ` G ) ) |
62 |
58 61
|
eleq12d |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { A , B } e. E <-> ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) ) ) |
63 |
|
eqcom |
|- ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } <-> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) |
64 |
63
|
biimpi |
|- ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) |
65 |
64
|
adantl |
|- ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) |
66 |
65
|
3ad2ant3 |
|- ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) |
67 |
66
|
adantl |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) |
68 |
67 61
|
eleq12d |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { B , C } e. E <-> ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) |
69 |
62 68
|
anbi12d |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) |
70 |
53 69
|
mpbird |
|- ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) |
71 |
70
|
ex |
|- ( G e. UMGraph -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
72 |
71
|
adantr |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
73 |
26 72
|
sylbid |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
74 |
13 73
|
sylbid |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
75 |
74
|
exlimdv |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
76 |
2
|
umgr2wlk |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) |
77 |
|
wlklenvp1 |
|- ( f ( Walks ` G ) p -> ( # ` p ) = ( ( # ` f ) + 1 ) ) |
78 |
|
oveq1 |
|- ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) |
79 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
80 |
78 79
|
eqtrdi |
|- ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = 3 ) |
81 |
80
|
adantr |
|- ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( # ` f ) + 1 ) = 3 ) |
82 |
77 81
|
sylan9eq |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( # ` p ) = 3 ) |
83 |
|
eqcom |
|- ( A = ( p ` 0 ) <-> ( p ` 0 ) = A ) |
84 |
|
eqcom |
|- ( B = ( p ` 1 ) <-> ( p ` 1 ) = B ) |
85 |
|
eqcom |
|- ( C = ( p ` 2 ) <-> ( p ` 2 ) = C ) |
86 |
83 84 85
|
3anbi123i |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) <-> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) |
87 |
86
|
biimpi |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) |
88 |
87
|
adantl |
|- ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) |
89 |
88
|
adantl |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) |
90 |
82 89
|
jca |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) |
91 |
1
|
wlkpwrd |
|- ( f ( Walks ` G ) p -> p e. Word V ) |
92 |
80
|
eqeq2d |
|- ( ( # ` f ) = 2 -> ( ( # ` p ) = ( ( # ` f ) + 1 ) <-> ( # ` p ) = 3 ) ) |
93 |
92
|
adantl |
|- ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = ( ( # ` f ) + 1 ) <-> ( # ` p ) = 3 ) ) |
94 |
|
simp1 |
|- ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> p e. Word V ) |
95 |
|
oveq2 |
|- ( ( # ` p ) = 3 -> ( 0 ..^ ( # ` p ) ) = ( 0 ..^ 3 ) ) |
96 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
97 |
95 96
|
eqtrdi |
|- ( ( # ` p ) = 3 -> ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) |
98 |
32
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
99 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 0 e. ( 0 ..^ ( # ` p ) ) <-> 0 e. { 0 , 1 , 2 } ) ) |
100 |
98 99
|
mpbiri |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 0 e. ( 0 ..^ ( # ` p ) ) ) |
101 |
|
wrdsymbcl |
|- ( ( p e. Word V /\ 0 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 0 ) e. V ) |
102 |
100 101
|
sylan2 |
|- ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 0 ) e. V ) |
103 |
40
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
104 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 1 e. ( 0 ..^ ( # ` p ) ) <-> 1 e. { 0 , 1 , 2 } ) ) |
105 |
103 104
|
mpbiri |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 1 e. ( 0 ..^ ( # ` p ) ) ) |
106 |
|
wrdsymbcl |
|- ( ( p e. Word V /\ 1 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 1 ) e. V ) |
107 |
105 106
|
sylan2 |
|- ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 1 ) e. V ) |
108 |
|
2ex |
|- 2 e. _V |
109 |
108
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
110 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 2 e. ( 0 ..^ ( # ` p ) ) <-> 2 e. { 0 , 1 , 2 } ) ) |
111 |
109 110
|
mpbiri |
|- ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 2 e. ( 0 ..^ ( # ` p ) ) ) |
112 |
|
wrdsymbcl |
|- ( ( p e. Word V /\ 2 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 2 ) e. V ) |
113 |
111 112
|
sylan2 |
|- ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 2 ) e. V ) |
114 |
102 107 113
|
3jca |
|- ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) |
115 |
97 114
|
sylan2 |
|- ( ( p e. Word V /\ ( # ` p ) = 3 ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) |
116 |
115
|
3adant3 |
|- ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) |
117 |
|
eleq1 |
|- ( A = ( p ` 0 ) -> ( A e. V <-> ( p ` 0 ) e. V ) ) |
118 |
117
|
3ad2ant1 |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( A e. V <-> ( p ` 0 ) e. V ) ) |
119 |
|
eleq1 |
|- ( B = ( p ` 1 ) -> ( B e. V <-> ( p ` 1 ) e. V ) ) |
120 |
119
|
3ad2ant2 |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( B e. V <-> ( p ` 1 ) e. V ) ) |
121 |
|
eleq1 |
|- ( C = ( p ` 2 ) -> ( C e. V <-> ( p ` 2 ) e. V ) ) |
122 |
121
|
3ad2ant3 |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( C e. V <-> ( p ` 2 ) e. V ) ) |
123 |
118 120 122
|
3anbi123d |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) ) |
124 |
123
|
3ad2ant3 |
|- ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) ) |
125 |
116 124
|
mpbird |
|- ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) |
126 |
94 125
|
jca |
|- ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) |
127 |
126
|
3exp |
|- ( p e. Word V -> ( ( # ` p ) = 3 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) |
128 |
127
|
adantr |
|- ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = 3 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) |
129 |
93 128
|
sylbid |
|- ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = ( ( # ` f ) + 1 ) -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) |
130 |
129
|
impancom |
|- ( ( p e. Word V /\ ( # ` p ) = ( ( # ` f ) + 1 ) ) -> ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) |
131 |
130
|
impd |
|- ( ( p e. Word V /\ ( # ` p ) = ( ( # ` f ) + 1 ) ) -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) |
132 |
91 77 131
|
syl2anc |
|- ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) |
133 |
132
|
imp |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) |
134 |
|
eqwrds3 |
|- ( ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( p = <" A B C "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) ) |
135 |
133 134
|
syl |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( p = <" A B C "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) ) |
136 |
90 135
|
mpbird |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> p = <" A B C "> ) |
137 |
136
|
breq2d |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p <-> f ( Walks ` G ) <" A B C "> ) ) |
138 |
137
|
biimpd |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) <" A B C "> ) ) |
139 |
138
|
ex |
|- ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) <" A B C "> ) ) ) |
140 |
139
|
pm2.43a |
|- ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) <" A B C "> ) ) |
141 |
140
|
3impib |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) <" A B C "> ) |
142 |
141
|
adantl |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> f ( Walks ` G ) <" A B C "> ) |
143 |
|
simpr2 |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( # ` f ) = 2 ) |
144 |
142 143
|
jca |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) |
145 |
144
|
ex |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
146 |
145
|
exlimdv |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
147 |
146
|
eximdv |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
148 |
76 147
|
syl5com |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
149 |
148
|
3expib |
|- ( G e. UMGraph -> ( ( { A , B } e. E /\ { B , C } e. E ) -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) ) |
150 |
149
|
com23 |
|- ( G e. UMGraph -> ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( { A , B } e. E /\ { B , C } e. E ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) ) |
151 |
150
|
imp |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
152 |
75 151
|
impbid |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) |
153 |
9 152
|
bitrd |
|- ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) |