| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s3wwlks2on.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | usgrwwlks2on.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | umgrupgr |  |-  ( G e. UMGraph -> G e. UPGraph ) | 
						
							| 4 | 3 | adantr |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> G e. UPGraph ) | 
						
							| 5 |  | simp1 |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> A e. V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) | 
						
							| 7 |  | simpr3 |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) | 
						
							| 8 | 1 | s3wwlks2on |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 9 | 4 6 7 8 | syl3anc |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 10 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 11 | 1 10 | upgr2wlk |  |-  ( G e. UPGraph -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) | 
						
							| 12 | 3 11 | syl |  |-  ( G e. UMGraph -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) ) ) | 
						
							| 14 |  | s3fv0 |  |-  ( A e. V -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 16 |  | s3fv1 |  |-  ( B e. V -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 18 | 15 17 | preq12d |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } = { A , B } ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } <-> ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } ) ) | 
						
							| 20 |  | s3fv2 |  |-  ( C e. V -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 21 | 20 | 3ad2ant3 |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 22 | 17 21 | preq12d |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } = { B , C } ) | 
						
							| 23 | 22 | eqeq2d |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } <-> ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) | 
						
							| 24 | 19 23 | anbi12d |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) | 
						
							| 26 | 25 | 3anbi3d |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) <-> ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) ) | 
						
							| 27 |  | umgruhgr |  |-  ( G e. UMGraph -> G e. UHGraph ) | 
						
							| 28 | 10 | uhgrfun |  |-  ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 29 |  | fdmrn |  |-  ( Fun ( iEdg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) | 
						
							| 30 |  | simpr |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) | 
						
							| 31 |  | id |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) ) | 
						
							| 32 |  | c0ex |  |-  0 e. _V | 
						
							| 33 | 32 | prid1 |  |-  0 e. { 0 , 1 } | 
						
							| 34 |  | fzo0to2pr |  |-  ( 0 ..^ 2 ) = { 0 , 1 } | 
						
							| 35 | 33 34 | eleqtrri |  |-  0 e. ( 0 ..^ 2 ) | 
						
							| 36 | 35 | a1i |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> 0 e. ( 0 ..^ 2 ) ) | 
						
							| 37 | 31 36 | ffvelcdmd |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( f ` 0 ) e. dom ( iEdg ` G ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( f ` 0 ) e. dom ( iEdg ` G ) ) | 
						
							| 39 | 30 38 | ffvelcdmd |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) ) | 
						
							| 40 |  | 1ex |  |-  1 e. _V | 
						
							| 41 | 40 | prid2 |  |-  1 e. { 0 , 1 } | 
						
							| 42 | 41 34 | eleqtrri |  |-  1 e. ( 0 ..^ 2 ) | 
						
							| 43 | 42 | a1i |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> 1 e. ( 0 ..^ 2 ) ) | 
						
							| 44 | 31 43 | ffvelcdmd |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( f ` 1 ) e. dom ( iEdg ` G ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( f ` 1 ) e. dom ( iEdg ` G ) ) | 
						
							| 46 | 30 45 | ffvelcdmd |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) | 
						
							| 47 | 39 46 | jca |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) | 
						
							| 48 | 47 | ex |  |-  ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 50 | 49 | com12 |  |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ran ( iEdg ` G ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 51 | 29 50 | sylbi |  |-  ( Fun ( iEdg ` G ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 52 | 27 28 51 | 3syl |  |-  ( G e. UMGraph -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) | 
						
							| 54 |  | eqcom |  |-  ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } <-> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) | 
						
							| 55 | 54 | biimpi |  |-  ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) | 
						
							| 57 | 56 | 3ad2ant3 |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) | 
						
							| 58 | 57 | adantl |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> { A , B } = ( ( iEdg ` G ) ` ( f ` 0 ) ) ) | 
						
							| 59 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 60 | 2 59 | eqtri |  |-  E = ran ( iEdg ` G ) | 
						
							| 61 | 60 | a1i |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> E = ran ( iEdg ` G ) ) | 
						
							| 62 | 58 61 | eleq12d |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { A , B } e. E <-> ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) ) ) | 
						
							| 63 |  | eqcom |  |-  ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } <-> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) | 
						
							| 64 | 63 | biimpi |  |-  ( ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) | 
						
							| 66 | 65 | 3ad2ant3 |  |-  ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> { B , C } = ( ( iEdg ` G ) ` ( f ` 1 ) ) ) | 
						
							| 68 | 67 61 | eleq12d |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { B , C } e. E <-> ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) | 
						
							| 69 | 62 68 | anbi12d |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> ( ( ( iEdg ` G ) ` ( f ` 0 ) ) e. ran ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) e. ran ( iEdg ` G ) ) ) ) | 
						
							| 70 | 53 69 | mpbird |  |-  ( ( G e. UMGraph /\ ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 71 | 70 | ex |  |-  ( G e. UMGraph -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { A , B } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { B , C } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 73 | 26 72 | sylbid |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f : ( 0 ..^ 2 ) --> dom ( iEdg ` G ) /\ <" A B C "> : ( 0 ... 2 ) --> V /\ ( ( ( iEdg ` G ) ` ( f ` 0 ) ) = { ( <" A B C "> ` 0 ) , ( <" A B C "> ` 1 ) } /\ ( ( iEdg ` G ) ` ( f ` 1 ) ) = { ( <" A B C "> ` 1 ) , ( <" A B C "> ` 2 ) } ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 74 | 13 73 | sylbid |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 75 | 74 | exlimdv |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) -> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 76 | 2 | umgr2wlk |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) | 
						
							| 77 |  | wlklenvp1 |  |-  ( f ( Walks ` G ) p -> ( # ` p ) = ( ( # ` f ) + 1 ) ) | 
						
							| 78 |  | oveq1 |  |-  ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) | 
						
							| 79 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 80 | 78 79 | eqtrdi |  |-  ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = 3 ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( # ` f ) + 1 ) = 3 ) | 
						
							| 82 | 77 81 | sylan9eq |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( # ` p ) = 3 ) | 
						
							| 83 |  | eqcom |  |-  ( A = ( p ` 0 ) <-> ( p ` 0 ) = A ) | 
						
							| 84 |  | eqcom |  |-  ( B = ( p ` 1 ) <-> ( p ` 1 ) = B ) | 
						
							| 85 |  | eqcom |  |-  ( C = ( p ` 2 ) <-> ( p ` 2 ) = C ) | 
						
							| 86 | 83 84 85 | 3anbi123i |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) <-> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) | 
						
							| 87 | 86 | biimpi |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) | 
						
							| 89 | 88 | adantl |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) | 
						
							| 90 | 82 89 | jca |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) | 
						
							| 91 | 1 | wlkpwrd |  |-  ( f ( Walks ` G ) p -> p e. Word V ) | 
						
							| 92 | 80 | eqeq2d |  |-  ( ( # ` f ) = 2 -> ( ( # ` p ) = ( ( # ` f ) + 1 ) <-> ( # ` p ) = 3 ) ) | 
						
							| 93 | 92 | adantl |  |-  ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = ( ( # ` f ) + 1 ) <-> ( # ` p ) = 3 ) ) | 
						
							| 94 |  | simp1 |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> p e. Word V ) | 
						
							| 95 |  | oveq2 |  |-  ( ( # ` p ) = 3 -> ( 0 ..^ ( # ` p ) ) = ( 0 ..^ 3 ) ) | 
						
							| 96 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 97 | 95 96 | eqtrdi |  |-  ( ( # ` p ) = 3 -> ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) | 
						
							| 98 | 32 | tpid1 |  |-  0 e. { 0 , 1 , 2 } | 
						
							| 99 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 0 e. ( 0 ..^ ( # ` p ) ) <-> 0 e. { 0 , 1 , 2 } ) ) | 
						
							| 100 | 98 99 | mpbiri |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 0 e. ( 0 ..^ ( # ` p ) ) ) | 
						
							| 101 |  | wrdsymbcl |  |-  ( ( p e. Word V /\ 0 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 0 ) e. V ) | 
						
							| 102 | 100 101 | sylan2 |  |-  ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 0 ) e. V ) | 
						
							| 103 | 40 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 104 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 1 e. ( 0 ..^ ( # ` p ) ) <-> 1 e. { 0 , 1 , 2 } ) ) | 
						
							| 105 | 103 104 | mpbiri |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 1 e. ( 0 ..^ ( # ` p ) ) ) | 
						
							| 106 |  | wrdsymbcl |  |-  ( ( p e. Word V /\ 1 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 1 ) e. V ) | 
						
							| 107 | 105 106 | sylan2 |  |-  ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 1 ) e. V ) | 
						
							| 108 |  | 2ex |  |-  2 e. _V | 
						
							| 109 | 108 | tpid3 |  |-  2 e. { 0 , 1 , 2 } | 
						
							| 110 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> ( 2 e. ( 0 ..^ ( # ` p ) ) <-> 2 e. { 0 , 1 , 2 } ) ) | 
						
							| 111 | 109 110 | mpbiri |  |-  ( ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } -> 2 e. ( 0 ..^ ( # ` p ) ) ) | 
						
							| 112 |  | wrdsymbcl |  |-  ( ( p e. Word V /\ 2 e. ( 0 ..^ ( # ` p ) ) ) -> ( p ` 2 ) e. V ) | 
						
							| 113 | 111 112 | sylan2 |  |-  ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( p ` 2 ) e. V ) | 
						
							| 114 | 102 107 113 | 3jca |  |-  ( ( p e. Word V /\ ( 0 ..^ ( # ` p ) ) = { 0 , 1 , 2 } ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) | 
						
							| 115 | 97 114 | sylan2 |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) | 
						
							| 116 | 115 | 3adant3 |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) | 
						
							| 117 |  | eleq1 |  |-  ( A = ( p ` 0 ) -> ( A e. V <-> ( p ` 0 ) e. V ) ) | 
						
							| 118 | 117 | 3ad2ant1 |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( A e. V <-> ( p ` 0 ) e. V ) ) | 
						
							| 119 |  | eleq1 |  |-  ( B = ( p ` 1 ) -> ( B e. V <-> ( p ` 1 ) e. V ) ) | 
						
							| 120 | 119 | 3ad2ant2 |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( B e. V <-> ( p ` 1 ) e. V ) ) | 
						
							| 121 |  | eleq1 |  |-  ( C = ( p ` 2 ) -> ( C e. V <-> ( p ` 2 ) e. V ) ) | 
						
							| 122 | 121 | 3ad2ant3 |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( C e. V <-> ( p ` 2 ) e. V ) ) | 
						
							| 123 | 118 120 122 | 3anbi123d |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) ) | 
						
							| 124 | 123 | 3ad2ant3 |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( p ` 0 ) e. V /\ ( p ` 1 ) e. V /\ ( p ` 2 ) e. V ) ) ) | 
						
							| 125 | 116 124 | mpbird |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 126 | 94 125 | jca |  |-  ( ( p e. Word V /\ ( # ` p ) = 3 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) | 
						
							| 127 | 126 | 3exp |  |-  ( p e. Word V -> ( ( # ` p ) = 3 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = 3 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) | 
						
							| 129 | 93 128 | sylbid |  |-  ( ( p e. Word V /\ ( # ` f ) = 2 ) -> ( ( # ` p ) = ( ( # ` f ) + 1 ) -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) | 
						
							| 130 | 129 | impancom |  |-  ( ( p e. Word V /\ ( # ` p ) = ( ( # ` f ) + 1 ) ) -> ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) ) | 
						
							| 131 | 130 | impd |  |-  ( ( p e. Word V /\ ( # ` p ) = ( ( # ` f ) + 1 ) ) -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) | 
						
							| 132 | 91 77 131 | syl2anc |  |-  ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) ) | 
						
							| 133 | 132 | imp |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) ) | 
						
							| 134 |  | eqwrds3 |  |-  ( ( p e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( p = <" A B C "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( p = <" A B C "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = A /\ ( p ` 1 ) = B /\ ( p ` 2 ) = C ) ) ) ) | 
						
							| 136 | 90 135 | mpbird |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> p = <" A B C "> ) | 
						
							| 137 | 136 | breq2d |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p <-> f ( Walks ` G ) <" A B C "> ) ) | 
						
							| 138 | 137 | biimpd |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) <" A B C "> ) ) | 
						
							| 139 | 138 | ex |  |-  ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) <" A B C "> ) ) ) | 
						
							| 140 | 139 | pm2.43a |  |-  ( f ( Walks ` G ) p -> ( ( ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) <" A B C "> ) ) | 
						
							| 141 | 140 | 3impib |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) <" A B C "> ) | 
						
							| 142 | 141 | adantl |  |-  ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> f ( Walks ` G ) <" A B C "> ) | 
						
							| 143 |  | simpr2 |  |-  ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( # ` f ) = 2 ) | 
						
							| 144 | 142 143 | jca |  |-  ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) | 
						
							| 145 | 144 | ex |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 146 | 145 | exlimdv |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 147 | 146 | eximdv |  |-  ( ( A e. V /\ B e. V /\ C e. V ) -> ( E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 148 | 76 147 | syl5com |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 149 | 148 | 3expib |  |-  ( G e. UMGraph -> ( ( { A , B } e. E /\ { B , C } e. E ) -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 150 | 149 | com23 |  |-  ( G e. UMGraph -> ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( { A , B } e. E /\ { B , C } e. E ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 151 | 150 | imp |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) -> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 152 | 75 151 | impbid |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 153 | 9 152 | bitrd |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) |