Step |
Hyp |
Ref |
Expression |
1 |
|
uneq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = ( (/) u. (/) ) ) |
2 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
3 |
1 2
|
eqtrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = (/) ) |
4 |
|
ssun1 |
|- A C_ ( A u. B ) |
5 |
|
sseq2 |
|- ( ( A u. B ) = (/) -> ( A C_ ( A u. B ) <-> A C_ (/) ) ) |
6 |
4 5
|
mpbii |
|- ( ( A u. B ) = (/) -> A C_ (/) ) |
7 |
|
ss0b |
|- ( A C_ (/) <-> A = (/) ) |
8 |
6 7
|
sylib |
|- ( ( A u. B ) = (/) -> A = (/) ) |
9 |
|
ssun2 |
|- B C_ ( A u. B ) |
10 |
|
sseq2 |
|- ( ( A u. B ) = (/) -> ( B C_ ( A u. B ) <-> B C_ (/) ) ) |
11 |
9 10
|
mpbii |
|- ( ( A u. B ) = (/) -> B C_ (/) ) |
12 |
|
ss0b |
|- ( B C_ (/) <-> B = (/) ) |
13 |
11 12
|
sylib |
|- ( ( A u. B ) = (/) -> B = (/) ) |
14 |
8 13
|
jca |
|- ( ( A u. B ) = (/) -> ( A = (/) /\ B = (/) ) ) |
15 |
3 14
|
impbii |
|- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |