| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uneq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = ( (/) u. (/) ) ) |
| 2 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 3 |
1 2
|
eqtrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = (/) ) |
| 4 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 5 |
|
sseq2 |
|- ( ( A u. B ) = (/) -> ( A C_ ( A u. B ) <-> A C_ (/) ) ) |
| 6 |
4 5
|
mpbii |
|- ( ( A u. B ) = (/) -> A C_ (/) ) |
| 7 |
|
ss0b |
|- ( A C_ (/) <-> A = (/) ) |
| 8 |
6 7
|
sylib |
|- ( ( A u. B ) = (/) -> A = (/) ) |
| 9 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 10 |
|
sseq2 |
|- ( ( A u. B ) = (/) -> ( B C_ ( A u. B ) <-> B C_ (/) ) ) |
| 11 |
9 10
|
mpbii |
|- ( ( A u. B ) = (/) -> B C_ (/) ) |
| 12 |
|
ss0b |
|- ( B C_ (/) <-> B = (/) ) |
| 13 |
11 12
|
sylib |
|- ( ( A u. B ) = (/) -> B = (/) ) |
| 14 |
8 13
|
jca |
|- ( ( A u. B ) = (/) -> ( A = (/) /\ B = (/) ) ) |
| 15 |
3 14
|
impbii |
|- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |