Metamath Proof Explorer


Theorem un00

Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion un00
|- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) )

Proof

Step Hyp Ref Expression
1 uneq12
 |-  ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = ( (/) u. (/) ) )
2 un0
 |-  ( (/) u. (/) ) = (/)
3 1 2 eqtrdi
 |-  ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = (/) )
4 ssun1
 |-  A C_ ( A u. B )
5 sseq2
 |-  ( ( A u. B ) = (/) -> ( A C_ ( A u. B ) <-> A C_ (/) ) )
6 4 5 mpbii
 |-  ( ( A u. B ) = (/) -> A C_ (/) )
7 ss0b
 |-  ( A C_ (/) <-> A = (/) )
8 6 7 sylib
 |-  ( ( A u. B ) = (/) -> A = (/) )
9 ssun2
 |-  B C_ ( A u. B )
10 sseq2
 |-  ( ( A u. B ) = (/) -> ( B C_ ( A u. B ) <-> B C_ (/) ) )
11 9 10 mpbii
 |-  ( ( A u. B ) = (/) -> B C_ (/) )
12 ss0b
 |-  ( B C_ (/) <-> B = (/) )
13 11 12 sylib
 |-  ( ( A u. B ) = (/) -> B = (/) )
14 8 13 jca
 |-  ( ( A u. B ) = (/) -> ( A = (/) /\ B = (/) ) )
15 3 14 impbii
 |-  ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) )