Metamath Proof Explorer


Theorem un2122

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis un2122.1
|- ( ( ( ph /\ ps ) /\ ps /\ ps ) -> ch )
Assertion un2122
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 un2122.1
 |-  ( ( ( ph /\ ps ) /\ ps /\ ps ) -> ch )
2 3anass
 |-  ( ( ( ph /\ ps ) /\ ps /\ ps ) <-> ( ( ph /\ ps ) /\ ( ps /\ ps ) ) )
3 anandir
 |-  ( ( ( ph /\ ps ) /\ ps ) <-> ( ( ph /\ ps ) /\ ( ps /\ ps ) ) )
4 ancom
 |-  ( ( ( ph /\ ps ) /\ ps ) <-> ( ps /\ ( ph /\ ps ) ) )
5 anabs7
 |-  ( ( ps /\ ( ph /\ ps ) ) <-> ( ph /\ ps ) )
6 4 5 bitri
 |-  ( ( ( ph /\ ps ) /\ ps ) <-> ( ph /\ ps ) )
7 3 6 bitr3i
 |-  ( ( ( ph /\ ps ) /\ ( ps /\ ps ) ) <-> ( ph /\ ps ) )
8 2 7 bitri
 |-  ( ( ( ph /\ ps ) /\ ps /\ ps ) <-> ( ph /\ ps ) )
9 8 1 sylbir
 |-  ( ( ph /\ ps ) -> ch )