Metamath Proof Explorer


Theorem unabs

Description: Absorption law for union. (Contributed by NM, 16-Apr-2006)

Ref Expression
Assertion unabs
|- ( A u. ( A i^i B ) ) = A

Proof

Step Hyp Ref Expression
1 inss1
 |-  ( A i^i B ) C_ A
2 ssequn2
 |-  ( ( A i^i B ) C_ A <-> ( A u. ( A i^i B ) ) = A )
3 1 2 mpbi
 |-  ( A u. ( A i^i B ) ) = A