| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unabw.1 |
|- ( x = y -> ( ph <-> ch ) ) |
| 2 |
|
unabw.2 |
|- ( x = y -> ( ps <-> th ) ) |
| 3 |
|
df-un |
|- ( { x | ph } u. { x | ps } ) = { y | ( y e. { x | ph } \/ y e. { x | ps } ) } |
| 4 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
| 5 |
1
|
sbievw |
|- ( [ y / x ] ph <-> ch ) |
| 6 |
4 5
|
bitri |
|- ( y e. { x | ph } <-> ch ) |
| 7 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
| 8 |
2
|
sbievw |
|- ( [ y / x ] ps <-> th ) |
| 9 |
7 8
|
bitri |
|- ( y e. { x | ps } <-> th ) |
| 10 |
6 9
|
orbi12i |
|- ( ( y e. { x | ph } \/ y e. { x | ps } ) <-> ( ch \/ th ) ) |
| 11 |
10
|
abbii |
|- { y | ( y e. { x | ph } \/ y e. { x | ps } ) } = { y | ( ch \/ th ) } |
| 12 |
3 11
|
eqtri |
|- ( { x | ph } u. { x | ps } ) = { y | ( ch \/ th ) } |