Description: An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005) (Revised by Mario Carneiro, 15-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | unben | |- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
|
2 | 1 | unbenlem | |- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ _om ) |
3 | nnenom | |- NN ~~ _om |
|
4 | 3 | ensymi | |- _om ~~ NN |
5 | entr | |- ( ( A ~~ _om /\ _om ~~ NN ) -> A ~~ NN ) |
|
6 | 2 4 5 | sylancl | |- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ NN ) |