| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unbenlem.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
| 2 |
|
nnex |
|- NN e. _V |
| 3 |
2
|
ssex |
|- ( A C_ NN -> A e. _V ) |
| 4 |
|
1z |
|- 1 e. ZZ |
| 5 |
4 1
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` 1 ) |
| 6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 7 |
|
f1oeq3 |
|- ( NN = ( ZZ>= ` 1 ) -> ( G : _om -1-1-onto-> NN <-> G : _om -1-1-onto-> ( ZZ>= ` 1 ) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( G : _om -1-1-onto-> NN <-> G : _om -1-1-onto-> ( ZZ>= ` 1 ) ) |
| 9 |
5 8
|
mpbir |
|- G : _om -1-1-onto-> NN |
| 10 |
|
f1ocnv |
|- ( G : _om -1-1-onto-> NN -> `' G : NN -1-1-onto-> _om ) |
| 11 |
|
f1of1 |
|- ( `' G : NN -1-1-onto-> _om -> `' G : NN -1-1-> _om ) |
| 12 |
9 10 11
|
mp2b |
|- `' G : NN -1-1-> _om |
| 13 |
|
f1ores |
|- ( ( `' G : NN -1-1-> _om /\ A C_ NN ) -> ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) |
| 14 |
12 13
|
mpan |
|- ( A C_ NN -> ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) |
| 15 |
|
f1oeng |
|- ( ( A e. _V /\ ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) -> A ~~ ( `' G " A ) ) |
| 16 |
3 14 15
|
syl2anc |
|- ( A C_ NN -> A ~~ ( `' G " A ) ) |
| 17 |
16
|
adantr |
|- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ ( `' G " A ) ) |
| 18 |
|
imassrn |
|- ( `' G " A ) C_ ran `' G |
| 19 |
|
dfdm4 |
|- dom G = ran `' G |
| 20 |
|
f1of |
|- ( G : _om -1-1-onto-> NN -> G : _om --> NN ) |
| 21 |
9 20
|
ax-mp |
|- G : _om --> NN |
| 22 |
21
|
fdmi |
|- dom G = _om |
| 23 |
19 22
|
eqtr3i |
|- ran `' G = _om |
| 24 |
18 23
|
sseqtri |
|- ( `' G " A ) C_ _om |
| 25 |
4 1
|
om2uzuzi |
|- ( y e. _om -> ( G ` y ) e. ( ZZ>= ` 1 ) ) |
| 26 |
25 6
|
eleqtrrdi |
|- ( y e. _om -> ( G ` y ) e. NN ) |
| 27 |
|
breq1 |
|- ( m = ( G ` y ) -> ( m < n <-> ( G ` y ) < n ) ) |
| 28 |
27
|
rexbidv |
|- ( m = ( G ` y ) -> ( E. n e. A m < n <-> E. n e. A ( G ` y ) < n ) ) |
| 29 |
28
|
rspcv |
|- ( ( G ` y ) e. NN -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) |
| 30 |
26 29
|
syl |
|- ( y e. _om -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) |
| 31 |
30
|
adantr |
|- ( ( y e. _om /\ A C_ NN ) -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) |
| 32 |
|
f1ocnv |
|- ( ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) -> `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A ) |
| 33 |
14 32
|
syl |
|- ( A C_ NN -> `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A ) |
| 34 |
|
f1ofun |
|- ( G : _om -1-1-onto-> NN -> Fun G ) |
| 35 |
9 34
|
ax-mp |
|- Fun G |
| 36 |
|
funcnvres2 |
|- ( Fun G -> `' ( `' G |` A ) = ( G |` ( `' G " A ) ) ) |
| 37 |
|
f1oeq1 |
|- ( `' ( `' G |` A ) = ( G |` ( `' G " A ) ) -> ( `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A <-> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) ) |
| 38 |
35 36 37
|
mp2b |
|- ( `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A <-> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) |
| 39 |
33 38
|
sylib |
|- ( A C_ NN -> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) |
| 40 |
|
f1ofo |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( G |` ( `' G " A ) ) : ( `' G " A ) -onto-> A ) |
| 41 |
|
forn |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -onto-> A -> ran ( G |` ( `' G " A ) ) = A ) |
| 42 |
40 41
|
syl |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ran ( G |` ( `' G " A ) ) = A ) |
| 43 |
42
|
eleq2d |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. ran ( G |` ( `' G " A ) ) <-> n e. A ) ) |
| 44 |
|
f1ofn |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( G |` ( `' G " A ) ) Fn ( `' G " A ) ) |
| 45 |
|
fvelrnb |
|- ( ( G |` ( `' G " A ) ) Fn ( `' G " A ) -> ( n e. ran ( G |` ( `' G " A ) ) <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) |
| 46 |
44 45
|
syl |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. ran ( G |` ( `' G " A ) ) <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) |
| 47 |
43 46
|
bitr3d |
|- ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. A <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) |
| 48 |
39 47
|
syl |
|- ( A C_ NN -> ( n e. A <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) |
| 49 |
48
|
biimpa |
|- ( ( A C_ NN /\ n e. A ) -> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) |
| 50 |
|
fvres |
|- ( m e. ( `' G " A ) -> ( ( G |` ( `' G " A ) ) ` m ) = ( G ` m ) ) |
| 51 |
50
|
eqeq1d |
|- ( m e. ( `' G " A ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n <-> ( G ` m ) = n ) ) |
| 52 |
51
|
biimpa |
|- ( ( m e. ( `' G " A ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( G ` m ) = n ) |
| 53 |
52
|
adantll |
|- ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( G ` m ) = n ) |
| 54 |
24
|
sseli |
|- ( m e. ( `' G " A ) -> m e. _om ) |
| 55 |
4 1
|
om2uzlt2i |
|- ( ( y e. _om /\ m e. _om ) -> ( y e. m <-> ( G ` y ) < ( G ` m ) ) ) |
| 56 |
54 55
|
sylan2 |
|- ( ( y e. _om /\ m e. ( `' G " A ) ) -> ( y e. m <-> ( G ` y ) < ( G ` m ) ) ) |
| 57 |
|
breq2 |
|- ( ( G ` m ) = n -> ( ( G ` y ) < ( G ` m ) <-> ( G ` y ) < n ) ) |
| 58 |
56 57
|
sylan9bb |
|- ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( G ` m ) = n ) -> ( y e. m <-> ( G ` y ) < n ) ) |
| 59 |
53 58
|
syldan |
|- ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( y e. m <-> ( G ` y ) < n ) ) |
| 60 |
59
|
biimparc |
|- ( ( ( G ` y ) < n /\ ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) ) -> y e. m ) |
| 61 |
60
|
exp44 |
|- ( ( G ` y ) < n -> ( y e. _om -> ( m e. ( `' G " A ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n -> y e. m ) ) ) ) |
| 62 |
61
|
imp31 |
|- ( ( ( ( G ` y ) < n /\ y e. _om ) /\ m e. ( `' G " A ) ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n -> y e. m ) ) |
| 63 |
62
|
reximdva |
|- ( ( ( G ` y ) < n /\ y e. _om ) -> ( E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n -> E. m e. ( `' G " A ) y e. m ) ) |
| 64 |
49 63
|
syl5 |
|- ( ( ( G ` y ) < n /\ y e. _om ) -> ( ( A C_ NN /\ n e. A ) -> E. m e. ( `' G " A ) y e. m ) ) |
| 65 |
64
|
exp4b |
|- ( ( G ` y ) < n -> ( y e. _om -> ( A C_ NN -> ( n e. A -> E. m e. ( `' G " A ) y e. m ) ) ) ) |
| 66 |
65
|
com4l |
|- ( y e. _om -> ( A C_ NN -> ( n e. A -> ( ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) ) ) |
| 67 |
66
|
imp |
|- ( ( y e. _om /\ A C_ NN ) -> ( n e. A -> ( ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) ) |
| 68 |
67
|
rexlimdv |
|- ( ( y e. _om /\ A C_ NN ) -> ( E. n e. A ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) |
| 69 |
31 68
|
syld |
|- ( ( y e. _om /\ A C_ NN ) -> ( A. m e. NN E. n e. A m < n -> E. m e. ( `' G " A ) y e. m ) ) |
| 70 |
69
|
ex |
|- ( y e. _om -> ( A C_ NN -> ( A. m e. NN E. n e. A m < n -> E. m e. ( `' G " A ) y e. m ) ) ) |
| 71 |
70
|
com3l |
|- ( A C_ NN -> ( A. m e. NN E. n e. A m < n -> ( y e. _om -> E. m e. ( `' G " A ) y e. m ) ) ) |
| 72 |
71
|
imp |
|- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> ( y e. _om -> E. m e. ( `' G " A ) y e. m ) ) |
| 73 |
72
|
ralrimiv |
|- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A. y e. _om E. m e. ( `' G " A ) y e. m ) |
| 74 |
|
unbnn3 |
|- ( ( ( `' G " A ) C_ _om /\ A. y e. _om E. m e. ( `' G " A ) y e. m ) -> ( `' G " A ) ~~ _om ) |
| 75 |
24 73 74
|
sylancr |
|- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> ( `' G " A ) ~~ _om ) |
| 76 |
|
entr |
|- ( ( A ~~ ( `' G " A ) /\ ( `' G " A ) ~~ _om ) -> A ~~ _om ) |
| 77 |
17 75 76
|
syl2anc |
|- ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ _om ) |