| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ctex |  |-  ( A ~<_ _om -> A e. _V ) | 
						
							| 2 |  | ctex |  |-  ( B ~<_ _om -> B e. _V ) | 
						
							| 3 |  | undjudom |  |-  ( ( A e. _V /\ B e. _V ) -> ( A u. B ) ~<_ ( A |_| B ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ ( A |_| B ) ) | 
						
							| 5 |  | djudom1 |  |-  ( ( A ~<_ _om /\ B e. _V ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) | 
						
							| 6 | 2 5 | sylan2 |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) | 
						
							| 7 |  | simpr |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> B ~<_ _om ) | 
						
							| 8 |  | omex |  |-  _om e. _V | 
						
							| 9 |  | djudom2 |  |-  ( ( B ~<_ _om /\ _om e. _V ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) | 
						
							| 11 |  | domtr |  |-  ( ( ( A |_| B ) ~<_ ( _om |_| B ) /\ ( _om |_| B ) ~<_ ( _om |_| _om ) ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) | 
						
							| 12 | 6 10 11 | syl2anc |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) | 
						
							| 13 | 8 8 | xpex |  |-  ( _om X. _om ) e. _V | 
						
							| 14 |  | xp2dju |  |-  ( 2o X. _om ) = ( _om |_| _om ) | 
						
							| 15 |  | ordom |  |-  Ord _om | 
						
							| 16 |  | 2onn |  |-  2o e. _om | 
						
							| 17 |  | ordelss |  |-  ( ( Ord _om /\ 2o e. _om ) -> 2o C_ _om ) | 
						
							| 18 | 15 16 17 | mp2an |  |-  2o C_ _om | 
						
							| 19 |  | xpss1 |  |-  ( 2o C_ _om -> ( 2o X. _om ) C_ ( _om X. _om ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( 2o X. _om ) C_ ( _om X. _om ) | 
						
							| 21 | 14 20 | eqsstrri |  |-  ( _om |_| _om ) C_ ( _om X. _om ) | 
						
							| 22 |  | ssdomg |  |-  ( ( _om X. _om ) e. _V -> ( ( _om |_| _om ) C_ ( _om X. _om ) -> ( _om |_| _om ) ~<_ ( _om X. _om ) ) ) | 
						
							| 23 | 13 21 22 | mp2 |  |-  ( _om |_| _om ) ~<_ ( _om X. _om ) | 
						
							| 24 |  | xpomen |  |-  ( _om X. _om ) ~~ _om | 
						
							| 25 |  | domentr |  |-  ( ( ( _om |_| _om ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( _om |_| _om ) ~<_ _om ) | 
						
							| 26 | 23 24 25 | mp2an |  |-  ( _om |_| _om ) ~<_ _om | 
						
							| 27 |  | domtr |  |-  ( ( ( A |_| B ) ~<_ ( _om |_| _om ) /\ ( _om |_| _om ) ~<_ _om ) -> ( A |_| B ) ~<_ _om ) | 
						
							| 28 | 12 26 27 | sylancl |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ _om ) | 
						
							| 29 |  | domtr |  |-  ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~<_ _om ) -> ( A u. B ) ~<_ _om ) | 
						
							| 30 | 4 28 29 | syl2anc |  |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ _om ) |