Step |
Hyp |
Ref |
Expression |
1 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
2 |
|
ctex |
|- ( B ~<_ _om -> B e. _V ) |
3 |
|
undjudom |
|- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
5 |
|
djudom1 |
|- ( ( A ~<_ _om /\ B e. _V ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) |
6 |
2 5
|
sylan2 |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) |
7 |
|
simpr |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> B ~<_ _om ) |
8 |
|
omex |
|- _om e. _V |
9 |
|
djudom2 |
|- ( ( B ~<_ _om /\ _om e. _V ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) |
10 |
7 8 9
|
sylancl |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) |
11 |
|
domtr |
|- ( ( ( A |_| B ) ~<_ ( _om |_| B ) /\ ( _om |_| B ) ~<_ ( _om |_| _om ) ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) |
12 |
6 10 11
|
syl2anc |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) |
13 |
8 8
|
xpex |
|- ( _om X. _om ) e. _V |
14 |
|
xp2dju |
|- ( 2o X. _om ) = ( _om |_| _om ) |
15 |
|
ordom |
|- Ord _om |
16 |
|
2onn |
|- 2o e. _om |
17 |
|
ordelss |
|- ( ( Ord _om /\ 2o e. _om ) -> 2o C_ _om ) |
18 |
15 16 17
|
mp2an |
|- 2o C_ _om |
19 |
|
xpss1 |
|- ( 2o C_ _om -> ( 2o X. _om ) C_ ( _om X. _om ) ) |
20 |
18 19
|
ax-mp |
|- ( 2o X. _om ) C_ ( _om X. _om ) |
21 |
14 20
|
eqsstrri |
|- ( _om |_| _om ) C_ ( _om X. _om ) |
22 |
|
ssdomg |
|- ( ( _om X. _om ) e. _V -> ( ( _om |_| _om ) C_ ( _om X. _om ) -> ( _om |_| _om ) ~<_ ( _om X. _om ) ) ) |
23 |
13 21 22
|
mp2 |
|- ( _om |_| _om ) ~<_ ( _om X. _om ) |
24 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
25 |
|
domentr |
|- ( ( ( _om |_| _om ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( _om |_| _om ) ~<_ _om ) |
26 |
23 24 25
|
mp2an |
|- ( _om |_| _om ) ~<_ _om |
27 |
|
domtr |
|- ( ( ( A |_| B ) ~<_ ( _om |_| _om ) /\ ( _om |_| _om ) ~<_ _om ) -> ( A |_| B ) ~<_ _om ) |
28 |
12 26 27
|
sylancl |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ _om ) |
29 |
|
domtr |
|- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~<_ _om ) -> ( A u. B ) ~<_ _om ) |
30 |
4 28 29
|
syl2anc |
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ _om ) |