Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | undif5 | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 | |- ( ( A u. B ) \ B ) = ( A \ B ) |
|
2 | disjdif2 | |- ( ( A i^i B ) = (/) -> ( A \ B ) = A ) |
|
3 | 1 2 | syl5eq | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ B ) = A ) |