Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif5 | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ B ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difun2 | |- ( ( A u. B ) \ B ) = ( A \ B ) | |
| 2 | disjdif2 | |- ( ( A i^i B ) = (/) -> ( A \ B ) = A ) | |
| 3 | 1 2 | eqtrid | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ B ) = A ) |