Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | undifabs | |- ( A u. ( A \ B ) ) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 | |- ( A u. ( A \ B ) ) = ( ( A u. A ) \ ( B \ A ) ) |
|
2 | unidm | |- ( A u. A ) = A |
|
3 | 2 | difeq1i | |- ( ( A u. A ) \ ( B \ A ) ) = ( A \ ( B \ A ) ) |
4 | difdif | |- ( A \ ( B \ A ) ) = A |
|
5 | 1 3 4 | 3eqtri | |- ( A u. ( A \ B ) ) = A |