Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023) (Proof shortened by SN, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | undifr | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 | |- ( A C_ B <-> ( B u. A ) = B ) |
|
2 | undif1 | |- ( ( B \ A ) u. A ) = ( B u. A ) |
|
3 | 2 | eqeq1i | |- ( ( ( B \ A ) u. A ) = B <-> ( B u. A ) = B ) |
4 | 1 3 | bitr4i | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) |