Metamath Proof Explorer


Theorem undifrOLD

Description: Obsolete version of undifr as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion undifrOLD
|- ( A C_ B <-> ( ( B \ A ) u. A ) = B )

Proof

Step Hyp Ref Expression
1 undif
 |-  ( A C_ B <-> ( A u. ( B \ A ) ) = B )
2 uncom
 |-  ( A u. ( B \ A ) ) = ( ( B \ A ) u. A )
3 2 eqeq1i
 |-  ( ( A u. ( B \ A ) ) = B <-> ( ( B \ A ) u. A ) = B )
4 1 3 bitri
 |-  ( A C_ B <-> ( ( B \ A ) u. A ) = B )