Description: Obsolete version of undifr as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undifrOLD | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | undif | |- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) | |
| 2 | uncom | |- ( A u. ( B \ A ) ) = ( ( B \ A ) u. A ) | |
| 3 | 2 | eqeq1i | |- ( ( A u. ( B \ A ) ) = B <-> ( ( B \ A ) u. A ) = B ) | 
| 4 | 1 3 | bitri | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) |