Description: Obsolete version of undifr as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | undifrOLD | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif | |- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
|
2 | uncom | |- ( A u. ( B \ A ) ) = ( ( B \ A ) u. A ) |
|
3 | 2 | eqeq1i | |- ( ( A u. ( B \ A ) ) = B <-> ( ( B \ A ) u. A ) = B ) |
4 | 1 3 | bitri | |- ( A C_ B <-> ( ( B \ A ) u. A ) = B ) |