Description: Distributive law for union over intersection. Theorem 29 of Suppes p. 27. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undir | |- ( ( A i^i B ) u. C ) = ( ( A u. C ) i^i ( B u. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undi | |- ( C u. ( A i^i B ) ) = ( ( C u. A ) i^i ( C u. B ) ) |
|
| 2 | uncom | |- ( ( A i^i B ) u. C ) = ( C u. ( A i^i B ) ) |
|
| 3 | uncom | |- ( A u. C ) = ( C u. A ) |
|
| 4 | uncom | |- ( B u. C ) = ( C u. B ) |
|
| 5 | 3 4 | ineq12i | |- ( ( A u. C ) i^i ( B u. C ) ) = ( ( C u. A ) i^i ( C u. B ) ) |
| 6 | 1 2 5 | 3eqtr4i | |- ( ( A i^i B ) u. C ) = ( ( A u. C ) i^i ( B u. C ) ) |