Metamath Proof Explorer


Theorem undir

Description: Distributive law for union over intersection. Theorem 29 of Suppes p. 27. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion undir
|- ( ( A i^i B ) u. C ) = ( ( A u. C ) i^i ( B u. C ) )

Proof

Step Hyp Ref Expression
1 undi
 |-  ( C u. ( A i^i B ) ) = ( ( C u. A ) i^i ( C u. B ) )
2 uncom
 |-  ( ( A i^i B ) u. C ) = ( C u. ( A i^i B ) )
3 uncom
 |-  ( A u. C ) = ( C u. A )
4 uncom
 |-  ( B u. C ) = ( C u. B )
5 3 4 ineq12i
 |-  ( ( A u. C ) i^i ( B u. C ) ) = ( ( C u. A ) i^i ( C u. B ) )
6 1 2 5 3eqtr4i
 |-  ( ( A i^i B ) u. C ) = ( ( A u. C ) i^i ( B u. C ) )