Metamath Proof Explorer


Theorem undisj1

Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004)

Ref Expression
Assertion undisj1
|- ( ( ( A i^i C ) = (/) /\ ( B i^i C ) = (/) ) <-> ( ( A u. B ) i^i C ) = (/) )

Proof

Step Hyp Ref Expression
1 un00
 |-  ( ( ( A i^i C ) = (/) /\ ( B i^i C ) = (/) ) <-> ( ( A i^i C ) u. ( B i^i C ) ) = (/) )
2 indir
 |-  ( ( A u. B ) i^i C ) = ( ( A i^i C ) u. ( B i^i C ) )
3 2 eqeq1i
 |-  ( ( ( A u. B ) i^i C ) = (/) <-> ( ( A i^i C ) u. ( B i^i C ) ) = (/) )
4 1 3 bitr4i
 |-  ( ( ( A i^i C ) = (/) /\ ( B i^i C ) = (/) ) <-> ( ( A u. B ) i^i C ) = (/) )