Metamath Proof Explorer


Theorem undisj2

Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004)

Ref Expression
Assertion undisj2
|- ( ( ( A i^i B ) = (/) /\ ( A i^i C ) = (/) ) <-> ( A i^i ( B u. C ) ) = (/) )

Proof

Step Hyp Ref Expression
1 un00
 |-  ( ( ( A i^i B ) = (/) /\ ( A i^i C ) = (/) ) <-> ( ( A i^i B ) u. ( A i^i C ) ) = (/) )
2 indi
 |-  ( A i^i ( B u. C ) ) = ( ( A i^i B ) u. ( A i^i C ) )
3 2 eqeq1i
 |-  ( ( A i^i ( B u. C ) ) = (/) <-> ( ( A i^i B ) u. ( A i^i C ) ) = (/) )
4 1 3 bitr4i
 |-  ( ( ( A i^i B ) = (/) /\ ( A i^i C ) = (/) ) <-> ( A i^i ( B u. C ) ) = (/) )