| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. V -> ( { (/) } X. A ) ~~ A ) | 
						
							| 4 |  | ensym |  |-  ( ( { (/) } X. A ) ~~ A -> A ~~ ( { (/) } X. A ) ) | 
						
							| 5 |  | endom |  |-  ( A ~~ ( { (/) } X. A ) -> A ~<_ ( { (/) } X. A ) ) | 
						
							| 6 | 3 4 5 | 3syl |  |-  ( A e. V -> A ~<_ ( { (/) } X. A ) ) | 
						
							| 7 |  | 1on |  |-  1o e. On | 
						
							| 8 |  | xpsnen2g |  |-  ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) | 
						
							| 9 | 7 8 | mpan |  |-  ( B e. W -> ( { 1o } X. B ) ~~ B ) | 
						
							| 10 |  | ensym |  |-  ( ( { 1o } X. B ) ~~ B -> B ~~ ( { 1o } X. B ) ) | 
						
							| 11 |  | endom |  |-  ( B ~~ ( { 1o } X. B ) -> B ~<_ ( { 1o } X. B ) ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( B e. W -> B ~<_ ( { 1o } X. B ) ) | 
						
							| 13 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) | 
						
							| 14 |  | undom |  |-  ( ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 16 | 6 12 15 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) | 
						
							| 17 |  | df-dju |  |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) | 
						
							| 18 | 16 17 | breqtrrdi |  |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) |