Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|- Rel ~<_ |
2 |
1
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
3 |
|
domeng |
|- ( B e. _V -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
4 |
2 3
|
syl |
|- ( A ~<_ B -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
5 |
4
|
ibi |
|- ( A ~<_ B -> E. x ( A ~~ x /\ x C_ B ) ) |
6 |
1
|
brrelex1i |
|- ( C ~<_ D -> C e. _V ) |
7 |
|
difss |
|- ( C \ A ) C_ C |
8 |
|
ssdomg |
|- ( C e. _V -> ( ( C \ A ) C_ C -> ( C \ A ) ~<_ C ) ) |
9 |
6 7 8
|
mpisyl |
|- ( C ~<_ D -> ( C \ A ) ~<_ C ) |
10 |
|
domtr |
|- ( ( ( C \ A ) ~<_ C /\ C ~<_ D ) -> ( C \ A ) ~<_ D ) |
11 |
9 10
|
mpancom |
|- ( C ~<_ D -> ( C \ A ) ~<_ D ) |
12 |
1
|
brrelex2i |
|- ( ( C \ A ) ~<_ D -> D e. _V ) |
13 |
|
domeng |
|- ( D e. _V -> ( ( C \ A ) ~<_ D <-> E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) ) |
14 |
12 13
|
syl |
|- ( ( C \ A ) ~<_ D -> ( ( C \ A ) ~<_ D <-> E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) ) |
15 |
14
|
ibi |
|- ( ( C \ A ) ~<_ D -> E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) |
16 |
11 15
|
syl |
|- ( C ~<_ D -> E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) |
17 |
5 16
|
anim12i |
|- ( ( A ~<_ B /\ C ~<_ D ) -> ( E. x ( A ~~ x /\ x C_ B ) /\ E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) ) |
18 |
17
|
adantr |
|- ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) -> ( E. x ( A ~~ x /\ x C_ B ) /\ E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) ) |
19 |
|
exdistrv |
|- ( E. x E. y ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) <-> ( E. x ( A ~~ x /\ x C_ B ) /\ E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) ) |
20 |
|
simprll |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> A ~~ x ) |
21 |
|
simprrl |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( C \ A ) ~~ y ) |
22 |
|
disjdif |
|- ( A i^i ( C \ A ) ) = (/) |
23 |
22
|
a1i |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( A i^i ( C \ A ) ) = (/) ) |
24 |
|
ss2in |
|- ( ( x C_ B /\ y C_ D ) -> ( x i^i y ) C_ ( B i^i D ) ) |
25 |
24
|
ad2ant2l |
|- ( ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) -> ( x i^i y ) C_ ( B i^i D ) ) |
26 |
25
|
adantl |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( x i^i y ) C_ ( B i^i D ) ) |
27 |
|
simplr |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( B i^i D ) = (/) ) |
28 |
|
sseq0 |
|- ( ( ( x i^i y ) C_ ( B i^i D ) /\ ( B i^i D ) = (/) ) -> ( x i^i y ) = (/) ) |
29 |
26 27 28
|
syl2anc |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( x i^i y ) = (/) ) |
30 |
|
undif2 |
|- ( A u. ( C \ A ) ) = ( A u. C ) |
31 |
|
unen |
|- ( ( ( A ~~ x /\ ( C \ A ) ~~ y ) /\ ( ( A i^i ( C \ A ) ) = (/) /\ ( x i^i y ) = (/) ) ) -> ( A u. ( C \ A ) ) ~~ ( x u. y ) ) |
32 |
30 31
|
eqbrtrrid |
|- ( ( ( A ~~ x /\ ( C \ A ) ~~ y ) /\ ( ( A i^i ( C \ A ) ) = (/) /\ ( x i^i y ) = (/) ) ) -> ( A u. C ) ~~ ( x u. y ) ) |
33 |
20 21 23 29 32
|
syl22anc |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( A u. C ) ~~ ( x u. y ) ) |
34 |
2
|
ad3antrrr |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> B e. _V ) |
35 |
1
|
brrelex2i |
|- ( C ~<_ D -> D e. _V ) |
36 |
35
|
ad3antlr |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> D e. _V ) |
37 |
|
unexg |
|- ( ( B e. _V /\ D e. _V ) -> ( B u. D ) e. _V ) |
38 |
34 36 37
|
syl2anc |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( B u. D ) e. _V ) |
39 |
|
unss12 |
|- ( ( x C_ B /\ y C_ D ) -> ( x u. y ) C_ ( B u. D ) ) |
40 |
39
|
ad2ant2l |
|- ( ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) -> ( x u. y ) C_ ( B u. D ) ) |
41 |
40
|
adantl |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( x u. y ) C_ ( B u. D ) ) |
42 |
|
ssdomg |
|- ( ( B u. D ) e. _V -> ( ( x u. y ) C_ ( B u. D ) -> ( x u. y ) ~<_ ( B u. D ) ) ) |
43 |
38 41 42
|
sylc |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( x u. y ) ~<_ ( B u. D ) ) |
44 |
|
endomtr |
|- ( ( ( A u. C ) ~~ ( x u. y ) /\ ( x u. y ) ~<_ ( B u. D ) ) -> ( A u. C ) ~<_ ( B u. D ) ) |
45 |
33 43 44
|
syl2anc |
|- ( ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) /\ ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) ) -> ( A u. C ) ~<_ ( B u. D ) ) |
46 |
45
|
ex |
|- ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) -> ( ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) -> ( A u. C ) ~<_ ( B u. D ) ) ) |
47 |
46
|
exlimdvv |
|- ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) -> ( E. x E. y ( ( A ~~ x /\ x C_ B ) /\ ( ( C \ A ) ~~ y /\ y C_ D ) ) -> ( A u. C ) ~<_ ( B u. D ) ) ) |
48 |
19 47
|
syl5bir |
|- ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) -> ( ( E. x ( A ~~ x /\ x C_ B ) /\ E. y ( ( C \ A ) ~~ y /\ y C_ D ) ) -> ( A u. C ) ~<_ ( B u. D ) ) ) |
49 |
18 48
|
mpd |
|- ( ( ( A ~<_ B /\ C ~<_ D ) /\ ( B i^i D ) = (/) ) -> ( A u. C ) ~<_ ( B u. D ) ) |