Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | uneq12 | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |
|
2 | uneq2 | |- ( C = D -> ( B u. C ) = ( B u. D ) ) |
|
3 | 1 2 | sylan9eq | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |