Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uneq12 | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |
|
| 2 | uneq2 | |- ( C = D -> ( B u. C ) = ( B u. D ) ) |
|
| 3 | 1 2 | sylan9eq | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |