Metamath Proof Explorer


Theorem uneq12d

Description: Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypotheses uneq1d.1
|- ( ph -> A = B )
uneq12d.2
|- ( ph -> C = D )
Assertion uneq12d
|- ( ph -> ( A u. C ) = ( B u. D ) )

Proof

Step Hyp Ref Expression
1 uneq1d.1
 |-  ( ph -> A = B )
2 uneq12d.2
 |-  ( ph -> C = D )
3 uneq12
 |-  ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A u. C ) = ( B u. D ) )