Description: Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uneq1d.1 | |- ( ph -> A = B ) |
|
uneq12d.2 | |- ( ph -> C = D ) |
||
Assertion | uneq12d | |- ( ph -> ( A u. C ) = ( B u. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | |- ( ph -> A = B ) |
|
2 | uneq12d.2 | |- ( ph -> C = D ) |
|
3 | uneq12 | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A u. C ) = ( B u. D ) ) |