Metamath Proof Explorer


Theorem uneq2i

Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis uneq1i.1
|- A = B
Assertion uneq2i
|- ( C u. A ) = ( C u. B )

Proof

Step Hyp Ref Expression
1 uneq1i.1
 |-  A = B
2 uneq2
 |-  ( A = B -> ( C u. A ) = ( C u. B ) )
3 1 2 ax-mp
 |-  ( C u. A ) = ( C u. B )