Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
2 |
|
eqtr |
|- ( ( ( B u. A ) = ( A u. B ) /\ ( A u. B ) = C ) -> ( B u. A ) = C ) |
3 |
2
|
eqcomd |
|- ( ( ( B u. A ) = ( A u. B ) /\ ( A u. B ) = C ) -> C = ( B u. A ) ) |
4 |
|
difeq1 |
|- ( C = ( B u. A ) -> ( C \ A ) = ( ( B u. A ) \ A ) ) |
5 |
|
difun2 |
|- ( ( B u. A ) \ A ) = ( B \ A ) |
6 |
|
eqtr |
|- ( ( ( C \ A ) = ( ( B u. A ) \ A ) /\ ( ( B u. A ) \ A ) = ( B \ A ) ) -> ( C \ A ) = ( B \ A ) ) |
7 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
8 |
7
|
eqeq1i |
|- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
9 |
|
disj3 |
|- ( ( B i^i A ) = (/) <-> B = ( B \ A ) ) |
10 |
8 9
|
bitri |
|- ( ( A i^i B ) = (/) <-> B = ( B \ A ) ) |
11 |
|
eqtr |
|- ( ( ( C \ A ) = ( B \ A ) /\ ( B \ A ) = B ) -> ( C \ A ) = B ) |
12 |
11
|
expcom |
|- ( ( B \ A ) = B -> ( ( C \ A ) = ( B \ A ) -> ( C \ A ) = B ) ) |
13 |
12
|
eqcoms |
|- ( B = ( B \ A ) -> ( ( C \ A ) = ( B \ A ) -> ( C \ A ) = B ) ) |
14 |
10 13
|
sylbi |
|- ( ( A i^i B ) = (/) -> ( ( C \ A ) = ( B \ A ) -> ( C \ A ) = B ) ) |
15 |
6 14
|
syl5com |
|- ( ( ( C \ A ) = ( ( B u. A ) \ A ) /\ ( ( B u. A ) \ A ) = ( B \ A ) ) -> ( ( A i^i B ) = (/) -> ( C \ A ) = B ) ) |
16 |
4 5 15
|
sylancl |
|- ( C = ( B u. A ) -> ( ( A i^i B ) = (/) -> ( C \ A ) = B ) ) |
17 |
3 16
|
syl |
|- ( ( ( B u. A ) = ( A u. B ) /\ ( A u. B ) = C ) -> ( ( A i^i B ) = (/) -> ( C \ A ) = B ) ) |
18 |
1 17
|
mpan |
|- ( ( A u. B ) = C -> ( ( A i^i B ) = (/) -> ( C \ A ) = B ) ) |
19 |
18
|
com12 |
|- ( ( A i^i B ) = (/) -> ( ( A u. B ) = C -> ( C \ A ) = B ) ) |
20 |
19
|
adantl |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C -> ( C \ A ) = B ) ) |
21 |
|
simpl |
|- ( ( A C_ C /\ ( C \ A ) = B ) -> A C_ C ) |
22 |
|
difssd |
|- ( ( C \ A ) = B -> ( C \ A ) C_ C ) |
23 |
|
sseq1 |
|- ( ( C \ A ) = B -> ( ( C \ A ) C_ C <-> B C_ C ) ) |
24 |
22 23
|
mpbid |
|- ( ( C \ A ) = B -> B C_ C ) |
25 |
24
|
adantl |
|- ( ( A C_ C /\ ( C \ A ) = B ) -> B C_ C ) |
26 |
21 25
|
unssd |
|- ( ( A C_ C /\ ( C \ A ) = B ) -> ( A u. B ) C_ C ) |
27 |
|
eqimss |
|- ( ( C \ A ) = B -> ( C \ A ) C_ B ) |
28 |
|
ssundif |
|- ( C C_ ( A u. B ) <-> ( C \ A ) C_ B ) |
29 |
27 28
|
sylibr |
|- ( ( C \ A ) = B -> C C_ ( A u. B ) ) |
30 |
29
|
adantl |
|- ( ( A C_ C /\ ( C \ A ) = B ) -> C C_ ( A u. B ) ) |
31 |
26 30
|
eqssd |
|- ( ( A C_ C /\ ( C \ A ) = B ) -> ( A u. B ) = C ) |
32 |
31
|
ex |
|- ( A C_ C -> ( ( C \ A ) = B -> ( A u. B ) = C ) ) |
33 |
32
|
adantr |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( C \ A ) = B -> ( A u. B ) = C ) ) |
34 |
20 33
|
impbid |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |