Step |
Hyp |
Ref |
Expression |
1 |
|
eqimss |
|- ( ( A u. B ) = ( A i^i B ) -> ( A u. B ) C_ ( A i^i B ) ) |
2 |
|
unss |
|- ( ( A C_ ( A i^i B ) /\ B C_ ( A i^i B ) ) <-> ( A u. B ) C_ ( A i^i B ) ) |
3 |
|
ssin |
|- ( ( A C_ A /\ A C_ B ) <-> A C_ ( A i^i B ) ) |
4 |
|
sstr |
|- ( ( A C_ A /\ A C_ B ) -> A C_ B ) |
5 |
3 4
|
sylbir |
|- ( A C_ ( A i^i B ) -> A C_ B ) |
6 |
|
ssin |
|- ( ( B C_ A /\ B C_ B ) <-> B C_ ( A i^i B ) ) |
7 |
|
simpl |
|- ( ( B C_ A /\ B C_ B ) -> B C_ A ) |
8 |
6 7
|
sylbir |
|- ( B C_ ( A i^i B ) -> B C_ A ) |
9 |
5 8
|
anim12i |
|- ( ( A C_ ( A i^i B ) /\ B C_ ( A i^i B ) ) -> ( A C_ B /\ B C_ A ) ) |
10 |
2 9
|
sylbir |
|- ( ( A u. B ) C_ ( A i^i B ) -> ( A C_ B /\ B C_ A ) ) |
11 |
1 10
|
syl |
|- ( ( A u. B ) = ( A i^i B ) -> ( A C_ B /\ B C_ A ) ) |
12 |
|
eqss |
|- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
13 |
11 12
|
sylibr |
|- ( ( A u. B ) = ( A i^i B ) -> A = B ) |
14 |
|
unidm |
|- ( A u. A ) = A |
15 |
|
inidm |
|- ( A i^i A ) = A |
16 |
14 15
|
eqtr4i |
|- ( A u. A ) = ( A i^i A ) |
17 |
|
uneq2 |
|- ( A = B -> ( A u. A ) = ( A u. B ) ) |
18 |
|
ineq2 |
|- ( A = B -> ( A i^i A ) = ( A i^i B ) ) |
19 |
16 17 18
|
3eqtr3a |
|- ( A = B -> ( A u. B ) = ( A i^i B ) ) |
20 |
13 19
|
impbii |
|- ( ( A u. B ) = ( A i^i B ) <-> A = B ) |