Metamath Proof Explorer


Theorem uneqri

Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis uneqri.1
|- ( ( x e. A \/ x e. B ) <-> x e. C )
Assertion uneqri
|- ( A u. B ) = C

Proof

Step Hyp Ref Expression
1 uneqri.1
 |-  ( ( x e. A \/ x e. B ) <-> x e. C )
2 elun
 |-  ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) )
3 2 1 bitri
 |-  ( x e. ( A u. B ) <-> x e. C )
4 3 eqriv
 |-  ( A u. B ) = C