Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexb | |- ( ( A e. _V /\ B e. _V ) <-> ( A u. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexg | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
|
| 2 | ssun1 | |- A C_ ( A u. B ) |
|
| 3 | ssexg | |- ( ( A C_ ( A u. B ) /\ ( A u. B ) e. _V ) -> A e. _V ) |
|
| 4 | 2 3 | mpan | |- ( ( A u. B ) e. _V -> A e. _V ) |
| 5 | ssun2 | |- B C_ ( A u. B ) |
|
| 6 | ssexg | |- ( ( B C_ ( A u. B ) /\ ( A u. B ) e. _V ) -> B e. _V ) |
|
| 7 | 5 6 | mpan | |- ( ( A u. B ) e. _V -> B e. _V ) |
| 8 | 4 7 | jca | |- ( ( A u. B ) e. _V -> ( A e. _V /\ B e. _V ) ) |
| 9 | 1 8 | impbii | |- ( ( A e. _V /\ B e. _V ) <-> ( A u. B ) e. _V ) |