Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unexd.1 | |- ( ph -> A e. V ) |
|
unexd.2 | |- ( ph -> B e. W ) |
||
Assertion | unexd | |- ( ph -> ( A u. B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexd.1 | |- ( ph -> A e. V ) |
|
2 | unexd.2 | |- ( ph -> B e. W ) |
|
3 | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A u. B ) e. _V ) |