Metamath Proof Explorer


Theorem unexd

Description: The union of two sets is a set. (Contributed by SN, 16-Jul-2024)

Ref Expression
Hypotheses unexd.1
|- ( ph -> A e. V )
unexd.2
|- ( ph -> B e. W )
Assertion unexd
|- ( ph -> ( A u. B ) e. _V )

Proof

Step Hyp Ref Expression
1 unexd.1
 |-  ( ph -> A e. V )
2 unexd.2
 |-  ( ph -> B e. W )
3 unexg
 |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V )
4 1 2 3 syl2anc
 |-  ( ph -> ( A u. B ) e. _V )