Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006) Prove unexg first and then unex and unexb from it. (Revised by BJ, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg | |- ( ( A e. V /\ B e. W ) -> U. { A , B } = ( A u. B ) ) |
|
| 2 | prex | |- { A , B } e. _V |
|
| 3 | 2 | a1i | |- ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) |
| 4 | 3 | uniexd | |- ( ( A e. V /\ B e. W ) -> U. { A , B } e. _V ) |
| 5 | 1 4 | eqeltrrd | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |