Metamath Proof Explorer


Theorem unexg

Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006) Prove unexg first and then unex and unexb from it. (Revised by BJ, 21-Jul-2025)

Ref Expression
Assertion unexg
|- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V )

Proof

Step Hyp Ref Expression
1 uniprg
 |-  ( ( A e. V /\ B e. W ) -> U. { A , B } = ( A u. B ) )
2 prex
 |-  { A , B } e. _V
3 2 a1i
 |-  ( ( A e. V /\ B e. W ) -> { A , B } e. _V )
4 3 uniexd
 |-  ( ( A e. V /\ B e. W ) -> U. { A , B } e. _V )
5 1 4 eqeltrrd
 |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V )