Step |
Hyp |
Ref |
Expression |
1 |
|
unfilem1.1 |
|- A e. _om |
2 |
|
unfilem1.2 |
|- B e. _om |
3 |
|
unfilem1.3 |
|- F = ( x e. B |-> ( A +o x ) ) |
4 |
|
ovex |
|- ( A +o x ) e. _V |
5 |
4 3
|
fnmpti |
|- F Fn B |
6 |
1 2 3
|
unfilem1 |
|- ran F = ( ( A +o B ) \ A ) |
7 |
|
df-fo |
|- ( F : B -onto-> ( ( A +o B ) \ A ) <-> ( F Fn B /\ ran F = ( ( A +o B ) \ A ) ) ) |
8 |
5 6 7
|
mpbir2an |
|- F : B -onto-> ( ( A +o B ) \ A ) |
9 |
|
fof |
|- ( F : B -onto-> ( ( A +o B ) \ A ) -> F : B --> ( ( A +o B ) \ A ) ) |
10 |
8 9
|
ax-mp |
|- F : B --> ( ( A +o B ) \ A ) |
11 |
|
oveq2 |
|- ( x = z -> ( A +o x ) = ( A +o z ) ) |
12 |
|
ovex |
|- ( A +o z ) e. _V |
13 |
11 3 12
|
fvmpt |
|- ( z e. B -> ( F ` z ) = ( A +o z ) ) |
14 |
|
oveq2 |
|- ( x = w -> ( A +o x ) = ( A +o w ) ) |
15 |
|
ovex |
|- ( A +o w ) e. _V |
16 |
14 3 15
|
fvmpt |
|- ( w e. B -> ( F ` w ) = ( A +o w ) ) |
17 |
13 16
|
eqeqan12d |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> ( A +o z ) = ( A +o w ) ) ) |
18 |
|
elnn |
|- ( ( z e. B /\ B e. _om ) -> z e. _om ) |
19 |
2 18
|
mpan2 |
|- ( z e. B -> z e. _om ) |
20 |
|
elnn |
|- ( ( w e. B /\ B e. _om ) -> w e. _om ) |
21 |
2 20
|
mpan2 |
|- ( w e. B -> w e. _om ) |
22 |
|
nnacan |
|- ( ( A e. _om /\ z e. _om /\ w e. _om ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
23 |
1 19 21 22
|
mp3an3an |
|- ( ( z e. B /\ w e. B ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
24 |
17 23
|
bitrd |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) |
25 |
24
|
biimpd |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
26 |
25
|
rgen2 |
|- A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) |
27 |
|
dff13 |
|- ( F : B -1-1-> ( ( A +o B ) \ A ) <-> ( F : B --> ( ( A +o B ) \ A ) /\ A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
28 |
10 26 27
|
mpbir2an |
|- F : B -1-1-> ( ( A +o B ) \ A ) |
29 |
|
df-f1o |
|- ( F : B -1-1-onto-> ( ( A +o B ) \ A ) <-> ( F : B -1-1-> ( ( A +o B ) \ A ) /\ F : B -onto-> ( ( A +o B ) \ A ) ) ) |
30 |
28 8 29
|
mpbir2an |
|- F : B -1-1-onto-> ( ( A +o B ) \ A ) |