| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unfilem1.1 |  |-  A e. _om | 
						
							| 2 |  | unfilem1.2 |  |-  B e. _om | 
						
							| 3 |  | unfilem1.3 |  |-  F = ( x e. B |-> ( A +o x ) ) | 
						
							| 4 |  | ovex |  |-  ( A +o x ) e. _V | 
						
							| 5 | 4 3 | fnmpti |  |-  F Fn B | 
						
							| 6 | 1 2 3 | unfilem1 |  |-  ran F = ( ( A +o B ) \ A ) | 
						
							| 7 |  | df-fo |  |-  ( F : B -onto-> ( ( A +o B ) \ A ) <-> ( F Fn B /\ ran F = ( ( A +o B ) \ A ) ) ) | 
						
							| 8 | 5 6 7 | mpbir2an |  |-  F : B -onto-> ( ( A +o B ) \ A ) | 
						
							| 9 |  | fof |  |-  ( F : B -onto-> ( ( A +o B ) \ A ) -> F : B --> ( ( A +o B ) \ A ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  F : B --> ( ( A +o B ) \ A ) | 
						
							| 11 |  | oveq2 |  |-  ( x = z -> ( A +o x ) = ( A +o z ) ) | 
						
							| 12 |  | ovex |  |-  ( A +o z ) e. _V | 
						
							| 13 | 11 3 12 | fvmpt |  |-  ( z e. B -> ( F ` z ) = ( A +o z ) ) | 
						
							| 14 |  | oveq2 |  |-  ( x = w -> ( A +o x ) = ( A +o w ) ) | 
						
							| 15 |  | ovex |  |-  ( A +o w ) e. _V | 
						
							| 16 | 14 3 15 | fvmpt |  |-  ( w e. B -> ( F ` w ) = ( A +o w ) ) | 
						
							| 17 | 13 16 | eqeqan12d |  |-  ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> ( A +o z ) = ( A +o w ) ) ) | 
						
							| 18 |  | elnn |  |-  ( ( z e. B /\ B e. _om ) -> z e. _om ) | 
						
							| 19 | 2 18 | mpan2 |  |-  ( z e. B -> z e. _om ) | 
						
							| 20 |  | elnn |  |-  ( ( w e. B /\ B e. _om ) -> w e. _om ) | 
						
							| 21 | 2 20 | mpan2 |  |-  ( w e. B -> w e. _om ) | 
						
							| 22 |  | nnacan |  |-  ( ( A e. _om /\ z e. _om /\ w e. _om ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) | 
						
							| 23 | 1 19 21 22 | mp3an3an |  |-  ( ( z e. B /\ w e. B ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) | 
						
							| 24 | 17 23 | bitrd |  |-  ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) | 
						
							| 25 | 24 | biimpd |  |-  ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) | 
						
							| 26 | 25 | rgen2 |  |-  A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) | 
						
							| 27 |  | dff13 |  |-  ( F : B -1-1-> ( ( A +o B ) \ A ) <-> ( F : B --> ( ( A +o B ) \ A ) /\ A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 28 | 10 26 27 | mpbir2an |  |-  F : B -1-1-> ( ( A +o B ) \ A ) | 
						
							| 29 |  | df-f1o |  |-  ( F : B -1-1-onto-> ( ( A +o B ) \ A ) <-> ( F : B -1-1-> ( ( A +o B ) \ A ) /\ F : B -onto-> ( ( A +o B ) \ A ) ) ) | 
						
							| 30 | 28 8 29 | mpbir2an |  |-  F : B -1-1-onto-> ( ( A +o B ) \ A ) |