Metamath Proof Explorer


Theorem uni0

Description: The union of the empty set is the empty set. Theorem 8.7 of Quine p. 54. (Contributed by NM, 16-Sep-1993) Remove use of ax-nul . (Revised by Eric Schmidt, 4-Apr-2007)

Ref Expression
Assertion uni0
|- U. (/) = (/)

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ { (/) }
2 uni0b
 |-  ( U. (/) = (/) <-> (/) C_ { (/) } )
3 1 2 mpbir
 |-  U. (/) = (/)