Metamath Proof Explorer


Theorem uni0

Description: The union of the empty set is the empty set. Theorem 8.7 of Quine p. 54. (Contributed by NM, 16-Sep-1993) Remove use of ax-nul . (Revised by Eric Schmidt, 4-Apr-2007) Avoid ax-11 . (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion uni0
|- U. (/) = (/)

Proof

Step Hyp Ref Expression
1 noel
 |-  -. y e. (/)
2 1 intnan
 |-  -. ( x e. y /\ y e. (/) )
3 2 nex
 |-  -. E. y ( x e. y /\ y e. (/) )
4 eluni
 |-  ( x e. U. (/) <-> E. y ( x e. y /\ y e. (/) ) )
5 3 4 mtbir
 |-  -. x e. U. (/)
6 5 nel0
 |-  U. (/) = (/)