Description: Part of Theorem 8.17 in Quine p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | uniabio | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) |
|
2 | df-sn | |- { y } = { x | x = y } |
|
3 | 1 2 | eqtr4di | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) |
4 | 3 | unieqd | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = U. { y } ) |
5 | vex | |- y e. _V |
|
6 | 5 | unisn | |- U. { y } = y |
7 | 4 6 | eqtrdi | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = y ) |