Description: Part of Theorem 8.17 in Quine p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniabio | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) |
|
| 2 | df-sn | |- { y } = { x | x = y } |
|
| 3 | 1 2 | eqtr4di | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) |
| 4 | 3 | unieqd | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = U. { y } ) |
| 5 | unisnv | |- U. { y } = y |
|
| 6 | 4 5 | eqtrdi | |- ( A. x ( ph <-> x = y ) -> U. { x | ph } = y ) |