Description: The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | unialeph | |- U. ran aleph = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephprc | |- -. ran aleph e. _V |
|
2 | uniexb | |- ( ran aleph e. _V <-> U. ran aleph e. _V ) |
|
3 | 1 2 | mtbi | |- -. U. ran aleph e. _V |
4 | elex | |- ( U. ran aleph e. On -> U. ran aleph e. _V ) |
|
5 | 3 4 | mto | |- -. U. ran aleph e. On |
6 | alephsson | |- ran aleph C_ On |
|
7 | ssorduni | |- ( ran aleph C_ On -> Ord U. ran aleph ) |
|
8 | 6 7 | ax-mp | |- Ord U. ran aleph |
9 | ordeleqon | |- ( Ord U. ran aleph <-> ( U. ran aleph e. On \/ U. ran aleph = On ) ) |
|
10 | 8 9 | mpbi | |- ( U. ran aleph e. On \/ U. ran aleph = On ) |
11 | 5 10 | mtpor | |- U. ran aleph = On |