Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | unicld | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | uniiun | |- U. A = U_ x e. A x |
|
3 | dfss3 | |- ( A C_ ( Clsd ` J ) <-> A. x e. A x e. ( Clsd ` J ) ) |
|
4 | 1 | iuncld | |- ( ( J e. Top /\ A e. Fin /\ A. x e. A x e. ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) ) |
5 | 3 4 | syl3an3b | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) ) |
6 | 2 5 | eqeltrid | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) ) |