Metamath Proof Explorer


Theorem unicld

Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion unicld
|- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 uniiun
 |-  U. A = U_ x e. A x
3 dfss3
 |-  ( A C_ ( Clsd ` J ) <-> A. x e. A x e. ( Clsd ` J ) )
4 1 iuncld
 |-  ( ( J e. Top /\ A e. Fin /\ A. x e. A x e. ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) )
5 3 4 syl3an3b
 |-  ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) )
6 2 5 eqeltrid
 |-  ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) )