Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | unicld | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | uniiun | |- U. A = U_ x e. A x |
|
| 3 | dfss3 | |- ( A C_ ( Clsd ` J ) <-> A. x e. A x e. ( Clsd ` J ) ) |
|
| 4 | 1 | iuncld | |- ( ( J e. Top /\ A e. Fin /\ A. x e. A x e. ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) ) |
| 5 | 3 4 | syl3an3b | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U_ x e. A x e. ( Clsd ` J ) ) |
| 6 | 2 5 | eqeltrid | |- ( ( J e. Top /\ A e. Fin /\ A C_ ( Clsd ` J ) ) -> U. A e. ( Clsd ` J ) ) |