Description: The countable union of countable sets is countable. Theorem 6Q of Enderton p. 159. See iunctb for indexed union version. (Contributed by NM, 26-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | unictb | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun | |- U. A = U_ x e. A x |
|
2 | iunctb | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U_ x e. A x ~<_ _om ) |
|
3 | 1 2 | eqbrtrid | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om ) |