Metamath Proof Explorer


Theorem unictb

Description: The countable union of countable sets is countable. Theorem 6Q of Enderton p. 159. See iunctb for indexed union version. (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion unictb
|- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om )

Proof

Step Hyp Ref Expression
1 uniiun
 |-  U. A = U_ x e. A x
2 iunctb
 |-  ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U_ x e. A x ~<_ _om )
3 1 2 eqbrtrid
 |-  ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om )