Metamath Proof Explorer


Theorem unidmex

Description: If F is a set, then U. dom F is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses unidmex.f
|- ( ph -> F e. V )
unidmex.x
|- X = U. dom F
Assertion unidmex
|- ( ph -> X e. _V )

Proof

Step Hyp Ref Expression
1 unidmex.f
 |-  ( ph -> F e. V )
2 unidmex.x
 |-  X = U. dom F
3 dmexg
 |-  ( F e. V -> dom F e. _V )
4 uniexg
 |-  ( dom F e. _V -> U. dom F e. _V )
5 1 3 4 3syl
 |-  ( ph -> U. dom F e. _V )
6 2 5 eqeltrid
 |-  ( ph -> X e. _V )