Description: If F is a set, then U. dom F is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unidmex.f | |- ( ph -> F e. V ) |
|
unidmex.x | |- X = U. dom F |
||
Assertion | unidmex | |- ( ph -> X e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmex.f | |- ( ph -> F e. V ) |
|
2 | unidmex.x | |- X = U. dom F |
|
3 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
4 | uniexg | |- ( dom F e. _V -> U. dom F e. _V ) |
|
5 | 1 3 4 | 3syl | |- ( ph -> U. dom F e. _V ) |
6 | 2 5 | eqeltrid | |- ( ph -> X e. _V ) |