Metamath Proof Explorer


Theorem unidmrn

Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008)

Ref Expression
Assertion unidmrn
|- U. U. `' A = ( dom A u. ran A )

Proof

Step Hyp Ref Expression
1 relcnv
 |-  Rel `' A
2 relfld
 |-  ( Rel `' A -> U. U. `' A = ( dom `' A u. ran `' A ) )
3 1 2 ax-mp
 |-  U. U. `' A = ( dom `' A u. ran `' A )
4 3 equncomi
 |-  U. U. `' A = ( ran `' A u. dom `' A )
5 dfdm4
 |-  dom A = ran `' A
6 df-rn
 |-  ran A = dom `' A
7 5 6 uneq12i
 |-  ( dom A u. ran A ) = ( ran `' A u. dom `' A )
8 4 7 eqtr4i
 |-  U. U. `' A = ( dom A u. ran A )