Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unidmrn | |- U. U. `' A = ( dom A u. ran A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relcnv | |- Rel `' A | |
| 2 | relfld | |- ( Rel `' A -> U. U. `' A = ( dom `' A u. ran `' A ) ) | |
| 3 | 1 2 | ax-mp | |- U. U. `' A = ( dom `' A u. ran `' A ) | 
| 4 | 3 | equncomi | |- U. U. `' A = ( ran `' A u. dom `' A ) | 
| 5 | dfdm4 | |- dom A = ran `' A | |
| 6 | df-rn | |- ran A = dom `' A | |
| 7 | 5 6 | uneq12i | |- ( dom A u. ran A ) = ( ran `' A u. dom `' A ) | 
| 8 | 4 7 | eqtr4i | |- U. U. `' A = ( dom A u. ran A ) |