Step |
Hyp |
Ref |
Expression |
1 |
|
elxp7 |
|- ( A e. ( B X. C ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
2 |
|
elvvuni |
|- ( A e. ( _V X. _V ) -> U. A e. A ) |
3 |
2
|
adantr |
|- ( ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) -> U. A e. A ) |
4 |
|
simprl |
|- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> A e. ( _V X. _V ) ) |
5 |
|
eleq2 |
|- ( x = A -> ( U. A e. x <-> U. A e. A ) ) |
6 |
|
eleq1 |
|- ( x = A -> ( x e. ( _V X. _V ) <-> A e. ( _V X. _V ) ) ) |
7 |
|
fveq2 |
|- ( x = A -> ( 1st ` x ) = ( 1st ` A ) ) |
8 |
7
|
eleq1d |
|- ( x = A -> ( ( 1st ` x ) e. B <-> ( 1st ` A ) e. B ) ) |
9 |
|
fveq2 |
|- ( x = A -> ( 2nd ` x ) = ( 2nd ` A ) ) |
10 |
9
|
eleq1d |
|- ( x = A -> ( ( 2nd ` x ) e. C <-> ( 2nd ` A ) e. C ) ) |
11 |
8 10
|
anbi12d |
|- ( x = A -> ( ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) <-> ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
12 |
6 11
|
anbi12d |
|- ( x = A -> ( ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) ) |
13 |
5 12
|
anbi12d |
|- ( x = A -> ( ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) <-> ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) ) ) |
14 |
13
|
spcegv |
|- ( A e. ( _V X. _V ) -> ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) ) |
15 |
4 14
|
mpcom |
|- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) |
16 |
|
eluniab |
|- ( U. A e. U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } <-> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) |
17 |
15 16
|
sylibr |
|- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> U. A e. U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } ) |
18 |
|
xp2 |
|- ( B X. C ) = { x e. ( _V X. _V ) | ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) } |
19 |
|
df-rab |
|- { x e. ( _V X. _V ) | ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) } = { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
20 |
18 19
|
eqtri |
|- ( B X. C ) = { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
21 |
20
|
unieqi |
|- U. ( B X. C ) = U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
22 |
17 21
|
eleqtrrdi |
|- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> U. A e. U. ( B X. C ) ) |
23 |
3 22
|
mpancom |
|- ( ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) -> U. A e. U. ( B X. C ) ) |
24 |
1 23
|
sylbi |
|- ( A e. ( B X. C ) -> U. A e. U. ( B X. C ) ) |