Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | unieqd.1 | |- ( ph -> A = B ) |
|
Assertion | unieqd | |- ( ph -> U. A = U. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | |- ( ph -> A = B ) |
|
2 | unieq | |- ( A = B -> U. A = U. B ) |
|
3 | 1 2 | syl | |- ( ph -> U. A = U. B ) |