Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unieqd.1 | |- ( ph -> A = B ) |
|
| Assertion | unieqd | |- ( ph -> U. A = U. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 | |- ( ph -> A = B ) |
|
| 2 | unieq | |- ( A = B -> U. A = U. B ) |
|
| 3 | 1 2 | syl | |- ( ph -> U. A = U. B ) |