Description: The Axiom of Union in class notation. This says that if A is a set i.e. A e. _V (see isset ), then the union of A is also a set. Same as Axiom 3 of TakeutiZaring p. 16. (Contributed by NM, 11-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uniex.1 | |- A e. _V |
|
Assertion | uniex | |- U. A e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | |- A e. _V |
|
2 | uniexg | |- ( A e. _V -> U. A e. _V ) |
|
3 | 1 2 | ax-mp | |- U. A e. _V |