Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniexb | |- ( A e. _V <-> U. A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | |- ( A e. _V -> U. A e. _V ) |
|
| 2 | uniexr | |- ( U. A e. _V -> A e. _V ) |
|
| 3 | 1 2 | impbii | |- ( A e. _V <-> U. A e. _V ) |