Metamath Proof Explorer


Theorem uniexd

Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis uniexd.1
|- ( ph -> A e. V )
Assertion uniexd
|- ( ph -> U. A e. _V )

Proof

Step Hyp Ref Expression
1 uniexd.1
 |-  ( ph -> A e. V )
2 uniexg
 |-  ( A e. V -> U. A e. _V )
3 1 2 syl
 |-  ( ph -> U. A e. _V )