Description: Converse of the Axiom of Union. Note that it does not require ax-un . (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | uniexr | |- ( U. A e. V -> A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni | |- A C_ ~P U. A |
|
2 | pwexg | |- ( U. A e. V -> ~P U. A e. _V ) |
|
3 | ssexg | |- ( ( A C_ ~P U. A /\ ~P U. A e. _V ) -> A e. _V ) |
|
4 | 1 2 3 | sylancr | |- ( U. A e. V -> A e. _V ) |