Metamath Proof Explorer


Theorem unifi

Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unifi
|- ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin )

Proof

Step Hyp Ref Expression
1 dfss3
 |-  ( A C_ Fin <-> A. x e. A x e. Fin )
2 uniiun
 |-  U. A = U_ x e. A x
3 iunfi
 |-  ( ( A e. Fin /\ A. x e. A x e. Fin ) -> U_ x e. A x e. Fin )
4 2 3 eqeltrid
 |-  ( ( A e. Fin /\ A. x e. A x e. Fin ) -> U. A e. Fin )
5 1 4 sylan2b
 |-  ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin )