Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | unifi | |- ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 | |- ( A C_ Fin <-> A. x e. A x e. Fin ) |
|
2 | uniiun | |- U. A = U_ x e. A x |
|
3 | iunfi | |- ( ( A e. Fin /\ A. x e. A x e. Fin ) -> U_ x e. A x e. Fin ) |
|
4 | 2 3 | eqeltrid | |- ( ( A e. Fin /\ A. x e. A x e. Fin ) -> U. A e. Fin ) |
5 | 1 4 | sylan2b | |- ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin ) |