Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
4 |
|
ovolficcss |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
5 |
1 4
|
syl |
|- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
6 |
|
ovolcl |
|- ( U. ran ( [,] o. F ) C_ RR -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* ) |
7 |
5 6
|
syl |
|- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* ) |
8 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
9 |
8 3
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
10 |
1 9
|
syl |
|- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
11 |
10
|
frnd |
|- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
12 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
13 |
11 12
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
14 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
15 |
13 14
|
syl |
|- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
16 |
|
ssid |
|- U. ran ( [,] o. F ) C_ U. ran ( [,] o. F ) |
17 |
3
|
ovollb2 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( [,] o. F ) C_ U. ran ( [,] o. F ) ) -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) ) |
18 |
1 16 17
|
sylancl |
|- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) ) |
19 |
1 2 3
|
uniioovol |
|- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) ) |
20 |
|
ioossicc |
|- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) C_ ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) ) |
21 |
|
df-ov |
|- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
22 |
|
df-ov |
|- ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
23 |
20 21 22
|
3sstr3i |
|- ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
24 |
23
|
a1i |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
25 |
|
ffvelrn |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
26 |
25
|
elin2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( RR X. RR ) ) |
27 |
|
1st2nd2 |
|- ( ( F ` x ) e. ( RR X. RR ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
28 |
26 27
|
syl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
29 |
28
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
30 |
28
|
fveq2d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( [,] ` ( F ` x ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
31 |
24 29 30
|
3sstr4d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) C_ ( [,] ` ( F ` x ) ) ) |
32 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
33 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( [,] o. F ) ` x ) = ( [,] ` ( F ` x ) ) ) |
34 |
31 32 33
|
3sstr4d |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
35 |
1 34
|
sylan |
|- ( ( ph /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
36 |
35
|
ralrimiva |
|- ( ph -> A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
37 |
|
ss2iun |
|- ( A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) ) |
38 |
36 37
|
syl |
|- ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) ) |
39 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
40 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
41 |
39 40
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
42 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
43 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
44 |
42 43
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
45 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
46 |
1 44 45
|
sylancl |
|- ( ph -> F : NN --> ( RR* X. RR* ) ) |
47 |
|
fnfco |
|- ( ( (,) Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) Fn NN ) |
48 |
41 46 47
|
sylancr |
|- ( ph -> ( (,) o. F ) Fn NN ) |
49 |
|
fniunfv |
|- ( ( (,) o. F ) Fn NN -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
50 |
48 49
|
syl |
|- ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
51 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
52 |
|
ffn |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
53 |
51 52
|
ax-mp |
|- [,] Fn ( RR* X. RR* ) |
54 |
|
fnfco |
|- ( ( [,] Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( [,] o. F ) Fn NN ) |
55 |
53 46 54
|
sylancr |
|- ( ph -> ( [,] o. F ) Fn NN ) |
56 |
|
fniunfv |
|- ( ( [,] o. F ) Fn NN -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) ) |
57 |
55 56
|
syl |
|- ( ph -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) ) |
58 |
38 50 57
|
3sstr3d |
|- ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) ) |
59 |
|
ovolss |
|- ( ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ U. ran ( [,] o. F ) C_ RR ) -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
60 |
58 5 59
|
syl2anc |
|- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
61 |
19 60
|
eqbrtrrd |
|- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
62 |
7 15 18 61
|
xrletrid |
|- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) = sup ( ran S , RR* , < ) ) |