Step |
Hyp |
Ref |
Expression |
1 |
|
uniimadomf.1 |
|- F/_ x F |
2 |
|
uniimadomf.2 |
|- A e. _V |
3 |
|
uniimadomf.3 |
|- B e. _V |
4 |
|
nfv |
|- F/ z ( F ` x ) ~<_ B |
5 |
|
nfcv |
|- F/_ x z |
6 |
1 5
|
nffv |
|- F/_ x ( F ` z ) |
7 |
|
nfcv |
|- F/_ x ~<_ |
8 |
|
nfcv |
|- F/_ x B |
9 |
6 7 8
|
nfbr |
|- F/ x ( F ` z ) ~<_ B |
10 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
11 |
10
|
breq1d |
|- ( x = z -> ( ( F ` x ) ~<_ B <-> ( F ` z ) ~<_ B ) ) |
12 |
4 9 11
|
cbvralw |
|- ( A. x e. A ( F ` x ) ~<_ B <-> A. z e. A ( F ` z ) ~<_ B ) |
13 |
2 3
|
uniimadom |
|- ( ( Fun F /\ A. z e. A ( F ` z ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |
14 |
12 13
|
sylan2b |
|- ( ( Fun F /\ A. x e. A ( F ` x ) ~<_ B ) -> U. ( F " A ) ~<_ ( A X. B ) ) |